

Lecture 3: Cartesian Products

Ms. Togzhan Nurtayeva Course Code: IT 235/A Semester 3 Week 5 Date: 02.11.2023

Objectives:

Ordered Pairs

Cartesian Products/Cross Products

Cardinality

Truth Sets

Quantifiers

An **ordered pair** is a set of two numbers that identifies the location of a point on a coordinate plane.

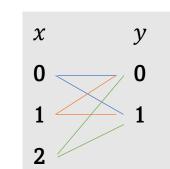
\Box An ordered pair (a, b) is a set:

 $\{\{a\}, \{a, b\}\}$

□ You've seen ordered pairs before as graph coordinates:

$$(1,2) = \{\{1\},\{1,2\}\}$$

$$(2,1) = \{\{2\},\{2,1\}\}$$


$$(-2,0) = \{\{-2\},\{-2,0\}\}$$

not the same ordered pairs

The Cartesian Product, $A \times B$, is the set:

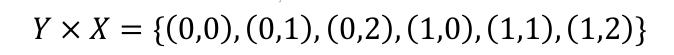
$$\{(a,b) \mid a \in A \text{ and } b \in B\}$$

Given $X = \{0, 1, 2\}$ and $Y = \{0, 1\}$:

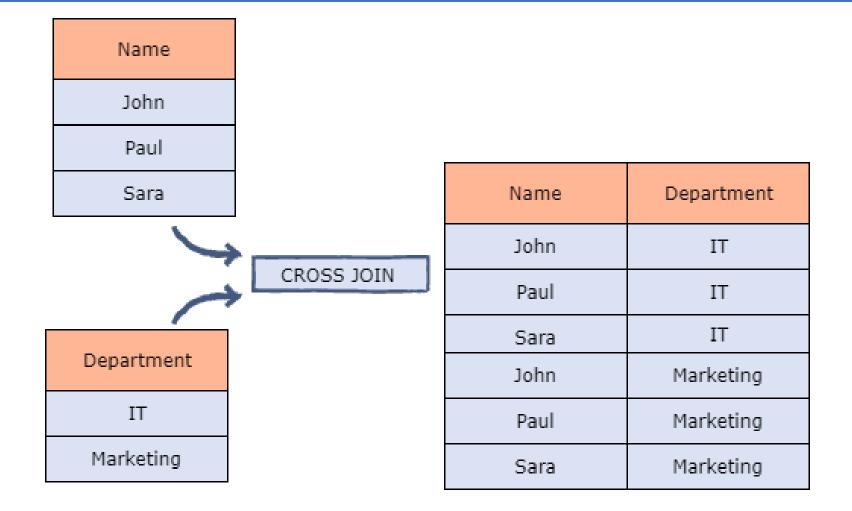
$$X \times Y = \{(0,0), (0,1), (1,0), (1,1), (2,0), (2,1)\}$$

X

0


2

y


0

1

AxB В 3 5 Х = S) Cartesian Product of Two Sets. Also, it can be called **Cross Product**

Cross join or Cartesian Join

Usage in Database

		\int	FR	LECT * OM table OSS JOI		:_b;		Ĵ			
	100	desc1	1 des	c12	10	01	desc41	deso	42		
F	101	desc2	1 des	c22	10	03	desc51	desc	52		
A	102	desc3	1 des	c32	10	05	desc61	desc	52		
		table_a	i)				table_t)			
		101	desc41	desc42	[100	desc11	desc12	101	desc41	desc42
🔺 100 de:	sc11 desc12 🗙	103	desc51	desc52	_	100	desc11	desc12	103	desc51	desc52
		105	desc61	desc52		100	desc11	desc12	105	desc61	desc52
		101	desc41	desc42		101	desc21	desc22	101	desc41	desc42
101 des	sc21 desc22 🗙	103	desc51	desc52	===	101	desc21	desc22	103	desc51	desc52
		105	desc61	desc52		101	desc21	desc22	105	desc61	desc52
		101	desc41	desc42		102	desc31	desc32	101	desc41	desc42
>> 102 de:	sc31 desc32 🗙	103	desc51	desc52	==	102	desc31	desc32	103	desc51	desc52
35 - 13		105	desc61	desc52		102	desc31	desc32	105	desc61	desc52
id	des1	des	52	id	1.1	d	es3	de	s4		
100	desc11		desc12 10 desc12 10			desc41		desc42		2	
100 100	desc11 desc11		desc12 desc12				esc51 esc61		sc52 sc62		- 1 -
101	desc21		5c22	105 101			esc41	de	sc42		
101	desc21		5C22				esc51		sc52	1	
101 102	desc21 desc31		5c22 5c32	105			esc61 esc41		sc62 sc42		
102	desc31		5C32	101			esc41 esc51		sc42 sc52		
102	desc31		5c32	105			esc61		sc62		

Enrolled		8
student_id	course_name	credit_status
12345678	CS 105	ugrad
25252525	CS 111	ugrad
45678900	CS 460	grad
33566891	CS 105	non-credit
45678900	CS 510	grad

	MajorsIn	19
	student_id	dept_name
	12345678	comp sci
_	45678900	mathematics
1	25252525	comp sci
1	45678900	english
1	66666666	the occult

Enrolled x MajorsIn

Enrolled. student_id	course_name	credit_status	MajorsIn. student_id	dept_name
12345678	CS 105	ugrad	12345678	comp sci
12345678	CS 105	ugrad	45678900	mathematics
12345678	CS 105	ugrad	25252525	comp sci
12345678	CS 105	ugrad	45678900	english
12345678	CS 105	ugrad	66666666	the occult
25252525	CS 111	ugrad	12345678	comp sci
25252525	CS 111	ugrad	45678900	mathematics

8

CROSS JOIN

300

Basavaraj

3

3

2014-02-01 23:48:32.853

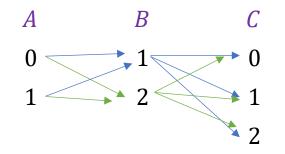
What is the cardinality of $A \times B$?

If |A| = m and |B| = n then $|A \times B| = m \cdot n$ |X| = 3 |Y| = 2 $|X \times Y| = 3 \cdot 2 = 6$

Cardinality – the number of elements in a set.

Cardinality = $4 \cdot 5 = 20$

Cartesian Products can generalize to n-tuples

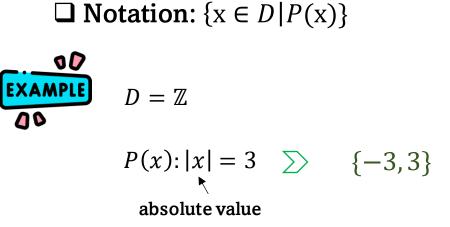

□3-tuple

$$A \times B \times C = \{(a, b, c) \mid a \in A, b \in B, c \in C\}$$

n-tuple

$$A_1 \times A_2 \times A_3 \times \dots \times A_n = \{(a_1, a_2, a_3, \dots, a_n) | a_1 \in A_1, a_2 \in A_2, a_3 \in A_3, \dots, a_n \in A_n\}$$

 \Box What is the Cartesian Product, $A \times B \times C$, where $A = \{0, 1\}, B = \{1, 2\}$, and $C = \{0, 1, 2\}$?


 $A \times B \times C = \{0, 1, 0\}, \{0, 1, 1\}, \{0, 1, 2\}, \{0, 2, 0\}, \{0, 2, 1\}, \{0, 2, 2\}, \\ \{1, 1, 0\}, \{1, 1, 1\}, \{1, 1, 2\}, \{1, 2, 0\}, \{1, 2, 1\}, \{1, 2, 2\}$

\Box Find the Cartesian product of $C \times A \times B$, A^2 and A^3 .

 \Box A truth set of P is the set of elements *x* in D such that *P*(*x*) is true.

a mathematical or logical set containing all the elements that make a given statement of relationships true when substituted in it the equation.

the equation x + 7 = 10 has as its truth set the single number 3

Quantifiers

Universal Besides "for all" and "for every," universal quantification can be expressed in many other $\Box \forall x P(x)$: "For all x, x is P" ways, including "all of," "for each," "given any," "for for all x, P(x). arbitrary," "for each," and "for any." the second Besides the phrase "there exists," we can also express $\Box \exists x P(x)$: "For some *x*, *x* is P" existential quantification in many other ways, such as by using the

there exists an *x* for which P(x).

Quantifier Negation

 $\neg \exists x P(x) \Leftrightarrow \forall x \neg P(x);$ $\neg \forall x P(x)) \Leftrightarrow \exists x \neg P(x).$ All students in my class have not taken a course in programming.

one," or "there is."

There is a student in my class who hasn't taken a course in programming.

words "for some," "for at least

We use this notation everywhere in mathematics

For every real number *n*, there is a real number *m* such that $m^2 = n$.

$$\forall n \in \mathbb{R} \quad \exists m \in \mathbb{R} \quad : m^2 = n$$

Given two rationales *x* and *y*, \sqrt{xy} will also be a rational.

A **conjunction** implies that both statements are true, while **disjunction** implies that at least one statement is true. With a conjunction, statements are connected by the word "and" while with disjunction statements are connected by the word "or." The symbol for conjunction is Λ . The symbol for disjunction is V.

Truth Sets

- 1. Translate each of these quantifications into English and determine its truth value.
 - **a)** $\forall x \in \mathbb{R} \ (x^2 \neq -1)$ **b)** $\exists x \in \mathbb{Z} \ (x^2 = 2)$ **c)** $\forall x \in \mathbb{Z} \ (x^2 > 0)$ **d)** $\exists x \in \mathbb{R} \ (x^2 = x)$
- 2. Translate each of these quantifications into English and determine its truth value.
 - **a)** $\exists x \in \mathbf{R} \ (x^3 = -1)$ **b)** $\exists x \in \mathbf{Z} \ (x + 1 > x)$
 - c) $\forall x \in \mathbb{Z} (x 1 \in \mathbb{Z})$ d) $\forall x \in \mathbb{Z} (x^2 \in \mathbb{Z})$
- **3.** Find the truth set of each of these predicates where the domain is the set of integers.
 - **a)** $P(x): x^2 < 3$ **b)** $Q(x): x^2 > x$ **c)** R(x): 2x + 1 = 0
- **4.** Find the truth set of each of these predicates where the domain is the set of integers.
 - **a)** $P(x): x^3 \ge 1$ **b)** $Q(x): x^2 = 2$ **c)** $R(x): x < x^2$

1) Let P(x) denote the statement " $x \le 4$." What are these truth values?

- a) P(0)
- b) P(4)
- c) P(6)

2) Let P(x) be the statement "x spends more than five hours every weekday in class," where the domain for x consists of all students. Express each of these quantifications in English.

a) $\exists x P(x)$

b) $\forall x P(x)$

3) Suppose the domain of the propositional function P(x, y) consists of pairs x and y, where x is 1, 2, or 3 and y is 1, 2, or 3. Write out these propositions using disjunctions and conjunctions.

a) $\exists x P(x, 3)$

b) $\forall y P(1, y)$

- c) $\exists y \neg P(2, y)$
- d) $\forall x \neg P(x, 2)$

4) Let P(x) be the statement " $x = x^2$." If the domain consists of the integers, what are these truth values?

- a) P(0)
- b) P(1)
- c) P(-1)
- d) $\exists x P(x)$
- e) P(2)
- f) $\forall x P(x)$

5) Let N(x) be the statement "x has visited North Dakota," where the domain consists of the students in your school. Express each of these quantifications in English.

- a) $\exists x N(x)$
- b) $\forall x N(x)$

6) Let Q(x) be the statement "x + 1 > 2x." If the domain consists of all integers, what are these truth values?

- a) Q(0)
- b) $\exists x Q(x)$
- c) Q(-1)
- d) $\forall x Q(x)$
- e) Q(1)

Cartesian Products

Let
$$A = \{a, b, c\}$$
, $B = \{x, y\}$, and $C = \{0, 1\}$. Find
a) $A \times B \times C$.
b) $C \times B \times A$.
c) $C \times A \times B$.
d) $B \times B \times B$.

Find
$$A^2$$
 if
a) $A = \{0, 1, 3\}$.
b) $A = \{1, 2, a, b\}$.

Exercise

Let $A = \{a, b\}$ and $B = \{c, d\}$

$$A \times B =$$

 $B^{2} =$

 $\emptyset \times A =$

Exercise

Let $A = \{a, b\}$ and $B = \{c, d\}$

$$A \times B = \{(a, c), (a, d), (b, c), (b, d)\}$$

$$B^{2} = B \times B = \{(c,c), (c,d), (d,c), (d,d)\}$$

 $\emptyset \times A = \emptyset$

$$|\emptyset \times A| = |\emptyset| \cdot |A| = 0 \cdot 2 = 0$$

Exercise

If |B| = m and |A| = n then find:

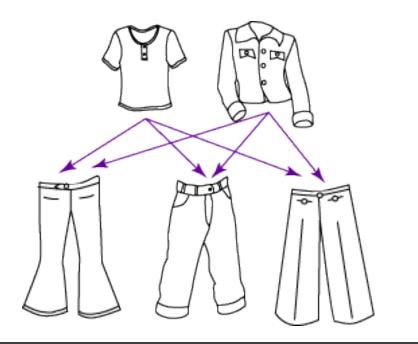
 $|A \times B| =$

 $|A^2| =$

 $|B^{32} \times A^{19}| =$

Answers

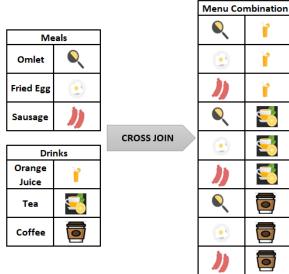
If |B| = m and |A| = n then find:


 $|A \times B| = m \cdot n$

 $|A^2| = n \cdot n = n^2$

 $|B^{32} \times A^{19}| = m^{32} n^{19}$

Where do we use Cartesian Products in real life?



a) The Spider hazard gets introduced.

b) Later, it is part of a more challenging obstacle.

Mighty Jill Off foreshadowing a hazard to prepare the players for a later challenge in the game.


-

-

5

0

game wants them to follow.

a) Super Metroid uses enemies to highlight the path the b) Castlevania Legends uses the enemies to guide the player towards a trap.

An example of how Super Metroid and Castlevania Legends used enemies to guide players to specific areas.

Use Cartesian Product to create combinations from given sets for selling

$$\rightarrow$$

$$C := \{ \text{blue, red, yellow, green, brown} \}$$
,
 $N := \{ \text{round neck, V-neck, polo-neck} \}$,
 $S := \{ \text{XS, S, M, L, XL, XXL} \}$

Make & Model : Toyota Corolla, Honda CRV, Chevy Cruze Colors : White, Grey, Red Engine Capacities : 1.4L, 1.6L, 1.8L