Lecture 4: Relations

Ms. Togzhan Nurtayeva Course Code: IT 235/A
Semester 3
Week 5-6
Date: 02.11.2023

A relation is a mathematical tool for describing associations between elements of sets. Relations are widely used in computer science, especially in databases and scheduling applications. A relation can be defined across many items in many sets, but in this text, we will focus on binary relations, which represent an association between two items in one or two sets.

(c) Two-way, with attributes (as above, with 'mutual friends')

3 Types of Relationships:

One-to-one:

One-to-many :

Many-to-many:

Many

One (and only one)

Zero or one

One or many

Let A and B be sets. A binary relation from A to B is a subset of $A \times B$.

When (a, b) belongs to R, a is said to be related to b by R.

$$
a R b \quad(a, b) \in R
$$

When a is not related to b :

$$
a \not R b \quad(a, b) \notin R
$$

Binary relations represent relationships between the elements of two sets.

Let A be the set of cities in the U.S.A., and let B be the set of the 50 states in the U.S.A.
Define the relation R by specifying that (a, b) belongs to R if a city with name a is in the state b.
\checkmark Boulder, Colorado
\checkmark Bangor, Maine
\checkmark Ann Arbor, Michigan
\checkmark Middletown, New Jersey
\checkmark Cupertino, California
\checkmark Red Bank, New Jersey
are in R.

A relation can be used to express a one-to-many relationship between the elements of the sets A and B (as in Example 1), where an element of A may be related to more than one element of B. A function represents a relation where exactly one element of B is related to each element of A.

YOUR TURN

Define the relation R by specifying that (a, b) belongs to R if a city with name a is in the region b (Kurdistan).

Let $A=\{0,1,2\}$ and $B=\{a, b\}$. Then $\{(0, a),(0, b),(1, a),(2, b)\}$ is a relation from A to B.

Mapping representation
Tabular representation

Let A be the set of students in your university, and let B be the set of courses. Let \boldsymbol{R} be the relation that consists of those pairs (a, b), where a is a student enrolled in course b.

Ahmed and Sara are enrolled in Programming 1 course. Then the pairs (Ahmed, Programming 1) and (Sara, Programming 1) belong to R.

If Ahmed is also enrolled in Physics 1, then the pair (Ahmed, Physics 1) is also in R. However, if Sara is not enrolled in Biology, then the pair (Sara, Biology) is not in R.

Relations

\square A relation R on a set X is a subset of $X \times X$.

If $(a, b) \in R$, we write $x R y$.

\Longleftrightarrow	$" x$ is related to $y "$
	$R(x, y)$
	$R x y$ (Predicate Logic)

$x G y: x$ is greater than $y .(x, y) \in \mathbb{Z}$
$\square(7,5)$
$\square(6,2)$
$\square(1,9)$
$\square(4.3,2)$
$x G y: x$ is greater than $y .(x, y) \in \mathbb{Z}$
$\square(7,5) \quad 7 G 5$ or $G(7,5)$
$\square(6,2)$

$\square(1,9)$
$1 G 9$
$\square(4.3,2)$

Don't make claim

not an \mathbb{Z}

Given the relation:

$$
\{(2,-6),(1,4),(2,4),(0,0),(1,-6),(3,0)\}
$$

$$
\text { domain }:\{0,1,2,3\}
$$

$$
\text { range }:\{-6,0,4\}
$$

$$
\{(-4,3),(-1,2),(0,-4),(2,3),(3,-3)\}
$$

$$
\text { domain }:\{-4,-1,0,2,3\}
$$

range

$$
:\{-4,-3,-2,3\}
$$

In Summary:

$>$ A relation is a set of pairs of input and output values.
$>$ There are four ways to represent relations:

Ordered Pairs
(input, output)

$$
\begin{gathered}
(x, y) \\
(-3,4) \\
(3,-1) \\
(4,-1) \\
(4,3)
\end{gathered}
$$

Table of Values

x	y
Input	Output
-3	4
3	-1
4	-1
4	3

Graph

Given the relation:

$$
\{(2,-3),(4,6),(3,-1),(6,6),(2,3)\}
$$

domain : $\{2,3,4,6\}$

$$
\text { range }:\{-3,-1,3,6\}
$$

Let A be the set $\{1,2,3,4\}$. Which ordered pairs are in the relation $R=\{(a, b) \mid a$ divides $b\}$?
Solution: Because (a, b) is in R if and only if a and b are positive integers not exceeding 4 such that a divides b, we see that
$R=\{(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4)\}$.
a divides $b=a \mid b=a \cdot k=b$

R	1	2	3	4
1	\times	\times	\times	\times
2		\times		\times
3			\times	
4				\times

Consider these relations on the set of integers:

$$
\begin{aligned}
& R 1=\{(a, b) \mid a \leq b\}, \\
& R 2=\{(a, b) \mid a>b\}, \\
& R 3=\{(a, b) \mid a=b \text { or } a=-b\}, \\
& R 4=\{(a, b) \mid a=b\}, \\
& R 5=\{(a, b) \mid a=b+1\}, \\
& R 6=\{(a, b) \mid a+b \leq 3\} .
\end{aligned}
$$

Which of these relations contain each of the pairs $(1,1),(1,2),(2,1),(1,-1)$, and $(2,2)$?

Solution: The pair $(1,1)$ is in $R 1, R 3, R 4$, and $R 6 ;(1,2)$ is in $R 1$ and $R 6 ;(2,1)$ is in $R 2, R 5$, and $R 6$; $(1,-1)$ is in $R 2, R 3$, and $R 6$; and finally, $(2,2)$ is in $R 1, R 3$, and $R 4$.

Relations as Functions

Relations are a generalization of graphs of functions;
\square The function f from A to B is the set of ordered pairs ($a, f(a)$) for $a \in A$

x	y		
-2	1		
-2	3		
0	-3		
1	4		
3	1		Relation in table
:---			

Relation in graph

Relation in mapping diagram

Relations

A relation shows a relationship between two values. A function is a relation where each input has only one output.

Mapping Diagram Function Practice

Input

These ARE NOT functions

Input Output

Define "Function" and "Not Function":

Function

$(4,12)$
$(5,15)$
$(6,18)$
$(7,21)$
$(8,24)$

Not Function
$(4,12)$
$(4,15)$
$(5,18)$
$(5,21)$
$(6,24)$

Use the vertical line test to determine whether or not a graph represents a function. If a vertical line is moved across the graph and, at any time, touches the graph at only one point, then the graph is a function. If the vertical line touches the graph at more than one point, then the graph is not a function.

Vertical Line Test \quad Cuemath

Vertical Line Test- \checkmark (It is a function)

Vertical Line Test- X
(Not a function)

Function Function $\begin{gathered}\text { Not a } \\ \text { Function }\end{gathered} \quad$ Function

Not a
Function

Function

Not a Function

Not a Function

Properties of Relations

$>$ Symmetric
$>$ Antisymmetric
> Transitive

> Reflexive

Advantages of relational databases:

\checkmark Simple Model
 \checkmark Data Accuracy
 \checkmark Easy to access Data
 \checkmark Security
 \checkmark Collaborate

A system used to maintain relational databases is a relational database management system (RDBMS). Many relational database systems are equipped with the option of using the SQL (Structured Query Language) for querying and maintaining the database.

Properties of Relations: Reflexive

Properties of Relations

Reflexive

DA relation R on a set A is called reflexive if $(a, a) \in R$ for every element $a \in A$.
DWe see that a relation on A is reflexive if every element of A is related to itself.

A relation R on a set A is said to be reflexive if $\forall a \in A,(a, a) \in R$.

$$
\begin{aligned}
& A=\{a, b, c\} \\
\times & \circ \emptyset \\
\checkmark & \circ A \times A \\
\checkmark & \circ\{(a, a),(b, b),(c, c)\} \\
\times & \circ\{(a, b),(b, a),(a, a),(b, b)\} \quad \text { because there is no }(c, c) \\
\checkmark & \circ\{(a, a),(b, b),(c, c),(a, b),(b, c)\} \\
\times & \circ\{(a, b),(b, c),(a, c)\}
\end{aligned}
$$

EXAMPLE 6

Answer:

Consider the following relations on $\{1,2,3,4\}$:

$$
\begin{aligned}
& R_{1}=\{(1,1),(1,2),(2,1),(2,2),(3,4),(4,1),(4,4)\}, \\
& R_{2}=\{(1,1),(1,2),(2,1)\}, \\
& R_{3}=\{(1,1),(1,2),(1,4),(2,1),(2,2),(3,3),(4,1),(4,4)\}, \\
& R_{4}=\{(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)\}, \\
& R_{5}=\{(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,3),(3,4),(4,4)\}, \\
& R_{6}=\{(3,4)\} .
\end{aligned}
$$

Which of these relations are reflexive?

In reflexive relations there should be all pairs of the form (a, a), namely, $(1,1),(2,2),(3,3)$, and $(4,4)$.

Therefore, only the relations R_{3} and R_{5} are reflexive.

Consider these relations on the set of integers:

$$
\begin{aligned}
& R 1=\{(a, b) \mid a \leq b\}, \\
& R 2=\{(a, b) \mid a>b\}, \\
& R 3=\{(a, b) \mid a=b \text { or } a=-b\}, \\
& R 4=\{(a, b) \mid a=b\}, \\
& R 5=\{(a, b) \mid a=b+1\}, \\
& R 6=\{(a, b) \mid a+b \leq 3\} .
\end{aligned}
$$

Which of the relations are reflexive?

Answer: R_{1} (because $a \leq a$ for every integer a), R_{3}, and R_{4}.

Properties of Relations: Symmetric

A relation R on a set A is said to be symmetric if $\forall a, b \in A,(a, b) \in R,(b, a) \in R$.

$$
\forall a \forall b((a, b) \in R \rightarrow(b, a) \in R)
$$

$$
A=\{1,2,3\}
$$

\checkmark

- \varnothing

It is a possible subset of the cartesian product; As there is no condition for \emptyset, then it is symmetric.
\checkmark

- $A \times A$
$\checkmark \circ\{(1,1),(2,2),(3,3)\}$
$\checkmark \circ\{(2,1),(1,2),(1,1)\}$
x
- $\{(3,1),(1,3),(2,3)\}$
$\times \circ\{(1,2),(2,3),(1,3)\}$

Properties of Relations: Antisymmetric

Given a relation R on a set A we say that R is antisymmetric if and only if: $\forall(a, b) \in R$ where $a \neq b$ we must have $(b, a) \notin R$.

$$
\begin{aligned}
& (3,1) \quad(7,3) \quad(1,7) \quad \notin R_{1} \\
& R_{1}=\{(1,3),(3,7),(7,1)\} \quad \checkmark \text { antisymmetric } \\
& R_{2}=\stackrel{(7,1)}{(1,7),} \stackrel{(3,7)}{(3,3),} \neq R_{1} \quad \checkmark \text { antisymmetric } \\
& (1,3) \quad(3,1) \quad(7,1) \\
& R_{3}=\{(3,1),(1,3),(1,7)\} \quad \times \text { not antisymmetric }
\end{aligned}
$$

A relation R on a set A is said to be antisymmetric $\forall a, b \in A,(a, b) \in R,(b, a) \in R \quad a=b$.

If you have (a, b) then you can never have (b, a), but $a=b$.

$$
A=\{1,2,3\}
$$

It is a possible subset of the cartesian product;
$\bigcirc \quad$ As there is no condition for \varnothing, then it is both symmetric and antisymmetric.
\times
○ $A \times A \quad$ In antisymmetric, if you have $(1,3)$ then you cannot have $(3,1)$.
$\checkmark \circ\{(1,1),(2,2),(3,3)\}$
$\checkmark \circ\{(2,1),(2,3),(1,1)\}$
$\times \circ\{(2,3),(3,2),(2,2),(3,3)\}$
$\checkmark \circ\{(1,1),(2,2),(2,3),(1,3)\}$

Antisymmetric - means we cannot accept the values of the one side symmetric pair but diagonal.

Back to EXAMPLE 5

Answer:

Consider these relations on the set of integers:

$$
\begin{aligned}
& R 1=\{(a, b) \mid a \leq b\}, \\
& R 2=\{(a, b) \mid a>b\}, \\
& R 3=\{(a, b) \mid a=b \text { or } a=-b\}, \\
& R 4=\{(a, b) \mid a=b\}, \\
& R 5=\{(a, b) \mid a=b+1\}, \\
& R 6=\{(a, b) \mid a+b \leq 3\} .
\end{aligned}
$$

Which of the relations are symmetric and which are antisymmetric?

The relations R_{3}, R_{4}, and R_{6} are symmetric.
R_{3} is symmetric, for if $a=b$ or $a=-b$, then $b=a$ or $b=-a$. R_{4} is symmetric because $a=b$ implies that $b=a$.
R_{6} is symmetric because $a+b \leq 3$ implies that $b+a \leq 3$.
The relations R_{1}, R_{2}, R_{4}, and R_{5} are antisymmetric.
R_{1} is antisymmetric because the inequalities $a \leq b$ and $b \leq a$ imply that $a=b$.
R_{2} is antisymmetric because it is impossible that $a>b$ and $b>a$.
R_{4} is antisymmetric, because two elements are related with respect to R_{4} if and only if they are equal.
R_{5} is antisymmetric because it is impossible that $a=b+1$ and $b=a+1$.

Back to EXAMPLE 6

Answer:

Consider the following relations on $\{1,2,3,4\}$:

$$
\begin{aligned}
& R_{1}=\{(1,1),(1,2),(2,1),(2,2),(3,4),(4,1),(4,4)\}, \\
& R_{2}=\{(1,1),(1,2),(2,1)\}, \\
& R_{3}=\{(1,1),(1,2),(1,4),(2,1),(2,2),(3,3),(4,1),(4,4)\}, \\
& R_{4}=\{(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)\}, \\
& R_{5}=\{(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,3),(3,4),(4,4)\}, \\
& R_{6}=\{(3,4)\} .
\end{aligned}
$$

Which of the relations are symmetric and which are antisymmetric?

The relations R_{2} and R_{3} are symmetric.
R_{4}, R_{5}, and R_{6} are all antisymmetric.

Properties of Relations: Transitive

A relation R on a set A is said to be transitive if $\forall a, b \in A,(a, b) \in R,(b, c) \in R$ then $(a, c) \in R$.

$$
A=\{1,2,3\}
$$

It is a possible subset of the cartesian product;
As there is no condition for \emptyset, then it is symmetric, antisymmetric, and transitive.
$\checkmark \circ A \times A$
$\checkmark \circ\{(1,1),(2,2),(3,3)\}$

- $\{(2,3),(1,2),(1,3)\}$
$\checkmark \circ\{(1,2),(1,3)\}$
$\checkmark \circ\{(2,3)\} \quad\}$
there is no requirement to check transitivity, so, the set automatically considered transitive.
$\times \circ\{(1,2),(2,1)\}$

(1,1) and (2,2) also should belong to R .

Detailed information about TRANSITIVE RELATION, when there are more than 3 pairs:

$$
R_{1}=\{(1,1),(1,2),(2,1),(2,2),(3,4),(4,1),(4,4)\}
$$

Start with the first pair , $(1,1)$. Here $a=1, b=1$.
Are their pairs that have their 1 st elements as b ? Yes
Only one pair, (1,2). Here $b=1, c=2$
Is (a, c) a member of R_{1} ? Yes. $\therefore R_{1}$ can be transitive.
Now move to the next pair , $(1,2)$. Here $a=1, b=2$.
Are their pairs that have their $1{ }^{\text {st }}$ elements as b ? Yes
Two pairs, $(2,1),(2,2)$. Here $b=2, c=1$ and $c=2$
Is (a, c) a member of R_{1} ? Yes for both $c=1$ and $c=2 . \therefore R_{1}$ may be transitive.
Now move to the next pair , $(2,1)$. Here $a=2, b=1$.
Are their pairs that have their 1 st elements as b ? Yes
Are their pairs that have their $1 \quad$ st elements as b ? Yes
Two pairs, $(1,1),(1,2)$. Here $b=1, c=1$ and $c=2$
Is (a, c) a member of R_{1} ? Yes for both $c=1$ and $c=2 . \therefore R_{1}$ may be transitive.
Now move to the next pair,$(2,2)$. Here $a=2, b=2$.
Are their pairs that have their $1{ }^{\text {st }}$ elements as b ? Yes
Two pairs, $(2,1),(2,2)$. Here $b=2, c=1$ and $c=2$
Is (a, c) a member of R_{1} ? Yes for both $c=1$ and $c=2 . \therefore R_{1}$ may be transitive.
Now move to the next pair , $(3,4)$. Here $a=3, b=4$.
Are their pairs that have their $1{ }^{\text {st }}$ elements as b ? Yes
Two pairs, $(4,1),(4,4)$. Here $b=4, c=1$ and $c=4$
Is (a, c) a member of R_{1} ? No for $c=1 . \therefore R_{1}$ is not transitive.
Finished! No need to do any further checking.

$$
R_{4}=\{(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)\}
$$

$$
(a, b) \underset{\text { Pairs with } b \text { as }}{\text { their } 1^{\text {st }} \text { element }} c(a, c) \in R_{4} \text { ? }
$$

$(2,1)$	-	-	-
$(3,1)$	-	-	-
$(3,2)$	$(2,1)$	1	Yes
$(4,1)$	-	-	-
$(4,2)$	$(2,1)$	1	Yes
$(4,3)$	$(3,1)$	1	Yes
	$(3,2)$	2	Yes

There are no "No" answers in the last column. Therefore, the relation R_{4} is transitive.

Conclusion

$\bigcirc \emptyset$ - not reflexive, but symmetric, antisymmetric, transitive

\square A relation R on a set A is called reflexive if $(a, a) \in R$ for every element $a \in A$.

$$
=\text { is reflexive }(2=2)
$$

\square That is, a relation is symmetric if and only if a is related to b implies that b is related to a.

$$
=\text { is symmetric (} x=2 \text { implies } 2=x \text {) }
$$

\square A relation is antisymmetric if and only if there are no pairs of distinct elements a and b with a related to b and b related to a.

```
\leqis antisymmetric ( }\textrm{x}\leq\textrm{y}\mathrm{ and }\textrm{y}\leq\textrm{x}\mathrm{ implies }\textrm{x}=\textrm{y}\mathrm{ )
```

\square A relation R on a set A is said to be transitive if $\forall a, b \in A,(a, b) \in R,(b, c) \in R$ then $(a, c) \in R$.

$$
<\text { is transitive }(2<3 \text { and } 3<5 \text { implies } 2<5)
$$

$\checkmark X=\{a, b, c, d\}$ and $R=\{(a, a),(a, b),(a, c),(d, b),(b, b),(c, d)\}$
\checkmark Let $\mathrm{A}=\{0,1,2,3\}$ and R a relation over A :

$$
\mathrm{R}=\{(0,0),(0,1),(0,3),(1,1),(1,0),(2,3),(3,3)\}
$$

\checkmark If R and S are reflexive, then $\mathrm{R} \cap \mathrm{S}$ is so. Explain why.
\checkmark If R and S are symmetric, then $R \cap S$ is so. Explain why.

Prove.

$$
\begin{aligned}
R & =\{(1,1),(1,2),(2,1),(2,2),(3,4),(4,1),(4,4)\} \\
R & =\{(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)\}
\end{aligned}
$$

For each of these relations on the set $\{1,2,3,4\}$, decide whether it is reflexive, whether it is symmetric, whether it is antisymmetric, and whether it is transitive.
a) $\{(2,2),(2,3),(2,4),(3,2),(3,3),(3,4)\}$
b) $\{(1,1),(1,2),(2,1),(2,2),(3,3),(4,4)\}$
c) $\{(2,4),(4,2)\}$
d) $\{(1,2),(2,3),(3,4)\}$
e) $\{(1,1),(2,2),(3,3),(4,4)\}$
f) $\{(1,3),(1,4),(2,3),(2,4),(3,1),(3,4)\}$

Directed Graphs or Digraphs

Reflexive

For any given item in the relation is going to be related to itself
$\forall x \quad x R x$
x

$$
\begin{gathered}
=5 \in X \\
(5,5) \in R \Rightarrow 5=5
\end{gathered}
$$

Symmetric

$$
\forall x \forall y \quad x R y \rightarrow y R x \quad \begin{array}{rl}
x & R \\
R \ldots \ldots \ldots
\end{array} \quad \neq \begin{aligned}
10 & \neq 11
\end{aligned} \rightarrow 11 \neq 10
$$

Transitive

$$
\forall x \forall y \forall z \quad x R y \wedge y R z \rightarrow x R z
$$

$$
3<5,5<7 \Rightarrow 3<7
$$

Equivalence Relation

$>$ A binary relation \boldsymbol{R} on a set \boldsymbol{A} is an equivalence relation if and only if
(1) \boldsymbol{R} is reflexive $\rightarrow \quad a, \quad a R a$
(2) \boldsymbol{R} is symmetric, and $\rightarrow a, b \quad a R b \rightarrow b R a$
(3) \boldsymbol{R} is transitive. $\rightarrow a R b \wedge b R c \rightarrow a R c$

Answer the Question: Which of these relations on $\{0,1,2,3\}$ are equivalence relations? Determine the properties of an equivalence relation that the others lack.
(a) $\{(0,0),(1,1),(2,2),(3,3),(0,1),(1,0)\}$
(b) $\{(0,0),(1,1),(0,2),(2,0),(2,2),(2,3),(3,2),(3,3)\}$
(c) $\{(0,0),(0,1),(1,0),(1,1),(1,2),(2,1),(2,2),(3,3)\}$
(d) $\{(0,0),(0,1),(1,0),(1,1),(1,3),(2,2),(2,3),(3,1),(3,2),(3,3)\}$

The directed graph with vertices a, b, c, and d, and edges:

$$
R=\{(a, b),(a, d),(b, b),(b, d),(c, a),(c, b),(d, b)\}
$$

The directed graph of the relation on the set $\{1,2,3,4\}$:

$$
R=\{(1,1),(1,3),(2,1),(2,3),(2,4),(3,1),(3,2),(4,1)\}
$$

What are the ordered pairs in the relation R represented by the directed graph below?

$$
R=\{(1,3),(1,4),(2,1),(2,2),(2,3),(3,1),(3,3),(4,1),(4,3)\} .
$$

Determine whether the relations for the directed graphs shown below are reflexive, symmetric, antisymmetric, and/or transitive.

(a) Directed graph of R
R is reflexive, neither symmetric nor antisymmetric and not transitive.

(b) Directed graph of S
S is not reflexive, symmetric and not antisymmetric, not transitive.
$>$ Draw the directed graph that represents the relation $\{(a, a),(a, b),(b, c),(c, b),(c, d),(d, a),(d, b)\}$.
$>$ List the ordered pairs in the relations represented by the directed graphs.

Determine their types.

Combining Relations

Because relations from A to B are subsets of $A \times B$, two relations from A to B can be combined in any way two sets can be combined.

EXAMPLE 17

Let $A=\{1,2,3\}$ and $B=\{1,2,3,4\}$. The relations $R 1=\{(1,1),(2,2),(3,3)\}$ and $R 2=\{(1,1),(1,2),(1,3),(1,4)\}$ can be combined to obtain:
$R 1 \cup R 2=\{(1,1),(1,2),(1,3),(1,4),(2,2),(3,3)\}$,
$R 1 \cap R 2=\{(1,1)\}$,
$R 1-R 2=\{(2,2),(3,3)\}$,
$R 2-R 1=\{(1,2),(1,3),(1,4)\}$.

Let $R_{1}=\{(1,2),(2,3),(3,4)\}$ and $R_{2}=\{(1,1),(1,2),(2,1),(2,2),(2,3)$, $(3,1),(3,2),(3,3),(3,4)\}$ be relations from $\{1,2,3\}$ to $\{1,2,3,4\}$. Find:
a) $R_{1} \cup R_{2}$.
b) $R_{1} \cap R_{2}$.
c) $R_{1}-R_{2}$.
d) $R_{2}-R_{1}$.

Databases and n-ary Relations

Let $A_{1}, A_{2}, \ldots, A_{n}$ be sets. An n-ary relation on these sets is a subset of $A_{1} \times A_{2} \times \cdots \times A_{n}$ The sets $A_{1}, A_{2}, \ldots, A_{n}$ are called the domains of the relation, and n is called its degree.
\square Let R be the relation on $\mathrm{N} \times \mathrm{N} \times \mathrm{N}$ (set of natural numbers) consisting of triples (a, b, c), where a, b, and c are integers with $\mathrm{a}<\mathrm{b}<\mathrm{c}$. Then $(1,2,3),(0,2,3),(3,4,5), \ldots \in R$, but $(2,4,3) \notin \mathrm{R}$.
n-ary Relationship in DBMS

The relation has degree 3
The domains of the relation are the set of natural numbers
\square Let R be the relation consisting of 5 -tuples (A, N, S, D, T) representing airplane flights, where \boldsymbol{A} is the airline, N is the flight number, \boldsymbol{S} is the starting point, \boldsymbol{D} is the destination, and \boldsymbol{T} is the departure time.

TABLE 1 Students.

Student_name	ID_number	Major	GPA
Ackermann	231455	Computer Science	3.88
Adams	888323	Physics	3.45
Chou	102147	Computer Science	3.49
Goodfriend	453876	Mathematics	3.45
Rao	678543	Mathematics	3.90
Stevens	786576	Psychology	2.99

Student records are represented as 4-tuples of the form (Student_name, ID_number, Major, GPA).
A sample database of six such records is:
(Ackermann, 231455, Computer Science, 3.88)
(Adams, 888323, Physics, 3.45)
(Chou, 102147, Computer Science, 3.49)
(Goodfriend, 453876, Mathematics, 3.45)
(Rao, 678543, Mathematics, 3.90)
(Stevens, 786576, Psychology, 2.99)

A database consists of records, which are n-tuples, made up of fields.
> Relations used to represent databases are also called tables, because these relations are often displayed as tables.
$>$ Each column of the table corresponds to an attribute of the database. In Table 1, the attributes of this database are Student Name, ID Number, Major, and GPA.

A domain of an n-ary relation is called a primary key.

Attribute $=$ Column AND Row $=$ Tuple
www.learncomputerscienceonline.com

In Table 1, there is only one 4-tuple in this table for each student name, the domain of student names is a primary key. Similarly, the ID numbers in this table are unique, so the domain of ID numbers is also a primary key. However, the domain of major fields of study is not a primary key, because more than one 4-tuple contains the same major field of study. The domain of grade point averages is also not a primary key, because there are two 4tuples containing the same GPA.

The Cartesian product of these domains is called a composite key.

| Stu Id
 Primary
 Key | Stu_Name | Stu_Age |
| :--- | :--- | :--- | :--- |
| 101 | Steve | 23 |
| 102 | John | 24 |
| 103 | Robert | 28 |
| 104 | Steve | 29 |
| 105 | Carl | 29 |

Unique values

A composite key in SQL can be defined as a combination of multiple columns, and these columns are used to identify all the rows that are involved uniquely.

Composite Key

Note: Any key such as super key, primary key, candidate key, etc. can be called composite key if it has more than one attributes.
Authorld FirstName LastName Gender

1	Mark	Dunn	Male
2	Sara	Longhorn	Female
3	Jessica	Dale	Female
4	Steve	Wicht	Male

Composite Primary Key

1	Learn SQL	10	Yes
2	Learn C\#	20	Yes
3	Learn CSS	15	Yes
4	Learn HTML	20	No

The 3-tuples in a 3-ary relation represent the following attributes of a student database: student ID number, name, phone number.
a) Is student ID number likely to be a primary key?
b) Is name likely to be a primary key?
c) Is phone number likely to be a primary key?

Let R be an n-ary relation and C a condition that elements in R may satisfy. Then the selection operator $\left(S_{C}\right)$ maps the n-ary relation \boldsymbol{R} to the n-ary relation of all n-tuples from \boldsymbol{R} that satisfy the condition \boldsymbol{C}.

To find the records of computer science majors in the n-ary relation R shown in Table 1, we use the operator $S_{C_{1}}$, where C_{1} is the condition Major = "Computer Science."

The result is the two 4-tuples (Ackermann, 231455, Computer Science, 3.88) and (Chou, 102147, Computer Science, 3.49).

Similarly, to find the records of students who have a grade point average above 3.5 in this database, we use the operator $S_{C_{2}}$, where C_{2} is the condition GPA > 3.5.

The result is the two 4-tuples (Ackermann, 231455, Computer Science, 3.88) and (Rao, 678543, Mathematics, 3.90).

Finally, to find the records of computer science majors who have a GPA above 3.5, we use the operator $S_{C_{3}}$, where C_{3} is the condition (Major= "Computer Science" \wedge GPA > 3.5).

The result consists of the single 4-tuple (Ackermann, 231455, Computer Science, 3.88).

TABLE 1 Students.			
Student_name	ID_number	Major	GPA
Ackermann	231455	Computer Science	3.88
Adams	888323	Physics	3.45
Chou	102147	Computer Science	3.49
Goodfriend	453876	Mathematics	3.45
Rao	678543	Mathematics	3.90
Stevens	786576	Psychology	2.99

We can use Relational Algebra to fetch data from this Table(relation)	1 D	Name	Age
	1	Akon	17
Select Name students with age less than 17	2	Bkon	19
	3	Ckon	15
	4	Dkon	13

Projections are used to form new n-ary relations by deleting the same fields in every record of the relation.

The projection $P_{i_{1} i_{2}, \ldots, i_{m}}$ where $i_{1}<i_{2}<\cdots<i_{m}$, maps the n-tuple $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ to the m-tuple $\left(a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{m}}\right)$, where $m \leq n$.

In other words, the projection $P_{i, 1,2, \ldots, i m}$ deletes $n-m$ of the components of an $n-$ tuple, leaving the i_{1} th, i_{2} th, . . . , and i_{m} th components.

For instance:

$>$ What results when the projection $P_{1,3}$ is applied to the 4 -tuples $(2,3,0,4)$, (Jane Doe, 234111001, Geography, 3.14), and ($a_{1}, a_{2}, a_{3}, a_{4}$)?

The projection $P_{1,3}$ sends these 4-tuples to (2,0), (Jane Doe, Geography), and (a_{1}, a_{3}), respectively.

What relation results when the projection $P_{1,4}$ is applied to the relation in Table 1?

TABLE 1 Students.

Student_name	ID_number	Major	GPA
Ackermann	231455	Computer Science	3.88
Adams	888323	Physics	3.45
Chou	102147	Computer Science	3.49
Goodfriend	453876	Mathematics	3.45
Rao	678543	Mathematics	3.90
Stevens	786576	Psychology	2.99

TABLE 2 GPAs.	
Student_name	$\boldsymbol{G P A}$
Ackermann	3.88
Adams	3.45
Chou	3.49
Goodfriend	3.45
Rao	3.90
Stevens	2.99

What is the table obtained when the projection $P_{1,2}$ is applied to the relation in Table 3?

TABLE 3 Enrollments.		
Student	Major	Course
Glauser	Biology	BI 290
Glauser	Biology	MS 475
Glauser	Biology	PY 410
Marcus	Mathematics	MS 511
Marcus	Mathematics	MS 603
Marcus	Mathematics	CS 322
Miller	Computer Science	MS 575
Miller	Computer Science	CS 455

I

TABLE 4 Majors.	
Student	Major
Glauser	Biology
Marcus	Mathematics
Miller	Computer Science

The join operation is used to combine two tables into one when these tables share some identical fields.

What relation results when the join operator J_{2} is used to combine the relation displayed in Tables 5 and 6?

Professor	pepartment	Course_number	Room	Time
Cruz	Zoology	335	A100	9:00 а м.
Cruz	Zoology	412	A100	8:00 А м.
Farber	Psychology	501	A100	3:00 P м.
Farber	Psychology	617	A110	11:00 A M.
Grammer	Physics	544	B505	4:00 Р м.
Rosen	Computer Science	518	N521	2:00 P M.
Rosen	Mankematics	575	N502	3:00 P M.

TABLE 8 Flights.				
Airline	Flight_number	Gate	Destination	Departure_time
Nadir	122	34	Detroit	$08: 10$
Acme	221	22	Denver	$08: 17$
Acme	122	33	Anchorage	$08: 22$
Acme	323	34	Honolulu	$08: 30$
Nadir	199	13	Detroit	$08: 47$
Acme	222	22	Denver	$09: 10$
Nadir	322	34	Detroit	$09: 44$

```
SELECT Departure_time
FROM Flights
WHERE Destination=' Detroit'
```

Output: 08:10, 08:47, 09:44

SELECT Professor, Time
FROM Teaching_assignments, Class_schedule WHERE Department='Mathematics'

Output: Rosen, 3:00 p.m.

TABLE 9 Part_needs.		
Supplier	Part_number	Project
23	1092	1
23	1101	3
23	9048	4
31	4975	3
31	3477	2
32	6984	4
32	9191	2
33	1001	1

TABLE 10 Parts_inventory.

Part_number	Project	Quantity	Color_code
1001	1	14	8
1092	1	2	2
1101	3	1	1
3477	2	25	2
4975	3	6	2
6984	4	10	1
9048	4	12	2
9191	2	80	4

$>$ What do you obtain when you apply the selection operator $s c$, where C is the condition (Project $=2) \wedge$ (Quantity ≥ 50), to the database in Table 10?
> Construct the table obtained by applying the join operator J_{2} to the relations in Tables 9 and 10.
$>$ What are the operations that correspond to the query expressed using this SQL statement?
a)

```
SELECT Supplier
FROM Part_needs
WHERE 1000 \leq Part_number \leq5000
```

b)

```
SELECT Supplier, Project
FROM Part_needs, Parts_inventory
WHERE Quantity \leq10
```


Representing Relations Using Matrices

$$
m_{i j}=\left\{\begin{array}{l}
1 \text { if }\left(a_{i}, b_{j}\right) \in R, \\
0 \text { if }\left(a_{i}, b_{j}\right) \notin R .
\end{array}\right.
$$

Suppose that $A=\{1,2,3\}$ and $B=\{1,2\}$. Let R be the relation from A to B containing (a, b) if $a \in A, b \in B$, and $a>b$. What is the matrix representing R if $a_{1}=1, a_{2}=2$, and $a_{3}=3$, and $b_{1}=1$ and $b_{2}=2$?

Because $R=\{(2,1),(3,1),(3,2)\}$, the matrix for R is

$$
M_{R}=\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
1 & 1
\end{array}\right]
$$

Let $A=\left\{a_{1}, a_{2}, a_{3}\right\}$ and $B=\left\{b_{1}, b_{2}, b_{3}, b_{4}, b_{5}\right\}$. Which ordered pairs are in the relation R represented by the matrix

$$
M_{R}=\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 1
\end{array}\right] ?
$$

$$
R=\left\{\left(a_{1}, b_{2}\right),\left(a_{2}, b_{1}\right),\left(a_{2}, b_{3}\right),\left(a_{2}, b_{4}\right),\left(a_{3}, b_{1}\right),\left(a_{3}, b_{3}\right),\left(a_{3}, b_{5}\right)\right\} .
$$

List the ordered pairs in the relations on $\{1,2,3\}$ corresponding to these matrices (where the rows and columns correspond to the integers listed in increasing order).
a) $\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]$
b) $\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0\end{array}\right]$
c) $\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1\end{array}\right]$

Determine their types.

Examples for matrices:

In true matrix style, we call the existence of a road link 1 and lack of a road link, a 0: Is there a link from Pink city to Blue city? yes. Pink to Pink? nonsensical, so 0 . Pink to Green? 0. Green to Blue? 1. Giving us a matrix:

	P			
P	0	1	1	0
B	1	0	1	1
O	1	1	0	0
G	0	1	0	0

We could also imagine that there are more than one roads going from one town to the other. For instance, see if you can write a matrix for this network:

The arrow from P to B means you can go to from P to B, but not from B to P. Two arrows on the same line mean the road is two-way:

| | P | B | O | G |
| :--- | :--- | :--- | :--- | :--- | :--- |
| P | 0 | 1 | 1 | 0 |
| B | 1 | 0 | 0 | 1 |
| O | 1 | 0 | 0 | 0 |
| G | 0 | 1 | 1 | 0 |

The next important use is that combining matrices can provide more information about the problem, than using each matrix alone. For instance, if we consider our first town routes representing train lines, (the goldenyellow matrix), and the city decided to add new bus lines (the sky-blue matrix) then combining these two we will have more information about how to move around these towns. Representing this new, more complex network as a matrix is as simple as multiplying the orange matrix to the blue one.

```
train = [0 1 1 0; 1011 1 ; 1 1 0 0; 0 1 0 0]
train
>4*4 Array{Int64,2}:
0 1 1 0
1 0}10
1}10
0
bus=[00110; 1 0 0 1; 10000; 0 1 1 0
bus
>4*4 Array{Int64,2}:
0}11111
1}0000
10}00
0
together = train * bus
together
>4*4 Array{Int64,2}:
2 0}00
17 2 2 0
28
29 1 0
```

Columns
Another example of matrices for calculating scores of millions of students at once.

Rows	Answer option1	Answer opition 2	Answer option 3	Answer option 4
Question 1	O	\bullet	O	\bigcirc
Question 2	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Question 3	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Question 4	\bigcirc	\bigcirc	\bigcirc	\bigcirc

Matrix

management structures in organizations

1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
1	1	1	1	0	0	1	1	1	1
1	1	1	0	0	0	1	1	1	1
1	1	1	1	0	0	1	1	1	1
1	1	1	1	0	0	1	1	1	1
1	1	1	1	0	0	1	1	1	1
1	1	1	0	0	0	0	1	1	1
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1

Add and subtract matrices
$\left[\begin{array}{ll}8 & 5 \\ 2 & 5\end{array}\right]+\left[\begin{array}{ll}9 & 5 \\ -\end{array}\right]=\left\lceil\begin{array}{cc}17 & 10 \\ - & -\end{array}\right]$

Activating Prior Knowledge

ir multiplication
$i]=\left[\begin{array}{ll}2 \cdot 10 & 2 \cdot 6 \\ 2 \cdot 4 & 2 \cdot 3\end{array}\right]$

Reference

Discrete Mathematics and Its Applications, $7^{\text {th }}$ edition by Kenneth H. Rosen Chapter 9: Relations, pages 573-597

$>$ What is the binary relation type of a set: $\{(1,1),(2,1),(2,2)$, $(2,3),(2,4),(3,1),(3,2)\} ?$
$>$ Let R 1 be a relation from $\mathrm{A}=\{1,3,5,7\}$ to $\mathrm{B}=\{2,4,6,8\}$ and R 2 be another relation from B to $C=\{1,2,3,4\}$ as defined below:
a) An element x in A is related to an element y in B (under R1) if $x+y$ is divisible by 3 .
b) An element x in B is related to an element y in C (under if $\mathrm{x}+\mathrm{y}$ is even but not divisible by 3 .
List ordered pairs of R1 and R2, find their types of relations.
$>$ Let R_{1}, R_{2} are relation defined on Z such that $a R_{1} b \Leftrightarrow(a-b)$ is divisible by 3 and $a R_{2} b \Leftrightarrow(a-b)$ is divisible by 4 . Then what are: $\left(R_{1} \cup R_{2}\right),\left(R_{1} \cap R_{2}\right)$ and $\left(R_{2}-R_{1}\right)$?
$>$ What is the Cartesian product of $A=\{1,2\}$ and $B=\{a, b\}$?

$>$ What is the Cardinality of the set $\{0,1,2\}$?
> The Cartesian Product $\mathrm{B} \times \mathrm{A}$ is equal to the Cartesian product $\mathrm{A} \times \mathrm{B}$.
a) True
b) False
> Which of the following two sets are equal?
a) $A=\{1,2\}$ and $B=\{1\}$
b) $A=\{1,2\}$ and $B=\{1,2,3\}$
c) $A=\{1,2,3\}$ and $B=\{2,1,3\}$
d) $A=\{1,2,4\}$ and $B=\{1,2,3\}$
$>$ The members of the set $S=\{x \mid x$ is the square of an integer and $x<100\}$ is \qquad
a) $\{0,2,4,5,9,58,49,56,99,12\}$
b) $\{0,1,4,9,16,25,36,49,64,81\}$
c) $\{1,4,9,16,25,36,64,81,85,99\}$
d) $\{0,1,4,9,16,25,36,49,64,121\}$
$>$ Let R be the relation on $N \times Z \times N \times Z$ consisting of 4-tuples (a, b, c, d) such that $(a+b \neq c+d) \wedge(a+b+c+d=0)$.
Give examples for this relation and find its degree.
$N=\{0,1,2,3, \ldots\}$ and $Z=\{\ldots,-2,-1,0,1,2, \ldots\}$

The relation has degree 4

$$
\begin{aligned}
& (5-11,3,3) \in R \\
& (0,-1,1,0) \in R \\
& (6,6,3,9) \notin R
\end{aligned}
$$

$>$ Let $A=\{1,4,5\}$ and R be given by the digraph shown below. Find the relation determined by the following digraph:

$$
>M_{R}=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

\Rightarrow Let $\mathrm{A}=\{1,2,3,4\}$ and $\mathrm{R}=\{(1,1),(1,2),(2,1),(2,2),(2,3),(2,4),(3,4),(4,1)\}$ is a relation on A. Draw the digraph of R.

Determine types of all these relations.

Determine their types.

State whether each set of ordered pairs represents a function.

1) $\{(10,9),(-2,-16),(-6,7),(5,8),(8,-16),(-11,9)\}$
2) $\{(-7,4),(-8,3),(-7,7),(-20,8),(5,9),(3,1),(2,6)\}$
3) $\{(-13,4),(7,-15),(-13,9),(6,-12),(-18,0)\}$
4) $\{(15,-3),(-6,9),(-3,0),(-1,16)\}$
5) $\{(-4,3),(5,-9),(11,4),(9,6),(5,-3),(8,-9),(1,4)\}$
6) $\{(12,-18),(15,1),(12,5),(0,9),(-5,-17)\}$
7) $\{(6,0),(-12,-16),(-6,10),(20,-7)\}$
8) $\{(-2,-4),(-8,3),(-7,-4),(-2,-8),(11,8),(9,-4)\}$
> State whether each set of ordered pairs on the graph represents a function.

9)
10)

3)

6. Input Output

