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» Computing systems are doing so much:

Why Study
Proofs?

» How can we guarantee they
work?

» Many advanced topics in computer
science, such as cryptography,
artificial intelligence, and formal
verification, heavily rely on proofs.
Understanding proofs lays a solid
foundation for comprehending and
working with these complex topics.




Why Study Proofs?

Why not just testing?

— Integrates well with programming
— No new languages, tools required

— Conclusive evidence for bugs
Because...

— Difficult to assess coverage

— Cannot demonstrate absence of bugs
— No guarantees for safety-critical systems

is
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' Plan your
program

Plan to fix errors

Identify the cause of the errors

Formal Verification

1. SOFTWARE

— If you want to debug a program beyond a doubt,
prove that it’s bug-free! Deduction and proof
provides universal guarantees.

2. HARDWARE

— Proof-theory has recently also been shown to be
useful in discovering bugs in pre-production
hardware.

https://cse.buffalo.edu/~erdem/cse331/support/proofs/index.html
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https://cse.buffalo.edu/~erdem/cse331/support/proofs/index.html

With the ever-increasing complexity of
software and the layers of abstraction,
we have reached a time when writing
secure, efficlent and resilient code
requires some level of formal
verification to be done, if not for the
whole software at least for the
important sub-systems involved. In
recent times we have  seen
more widespread adoption of formal
verification by the industry leaders like
Intel, Amazon or Microsoft, in products
where we have enormous complexity
and multiple systems interacting with
one another.
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< https://www.moritz.systems/blog/an-introduction-to-formal-verification/

A

S® Microsoft

amazon


https://lamport.azurewebsites.net/tla/industrial-use.html
https://www.moritz.systems/blog/an-introduction-to-formal-verification/
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v" Direct Proof
S9NV E  Proof by Case

v" Proof by Induction
v" Proof by Contradiction [




Terminology

J Definition: Something given (no proof)

E.g. LetM = [é i

J Theorem: Something to be proved

Results corollary (sub-proofs): any number divisible by 2 is even.



Direct Proof.

If ¢, then ¢.

Assume 0.

Show that ¢.

Prove: If x is odd, then x? is odd.

Assume x is odd. Odd number: x = 2n + 1
x? = (2n + 1)?
=4n*+4n+1
=2(2n° +2n) + 1

k



Direct Proof.

Prove:

If x, y are odd, then xy is odd.

x =2k +1

y=2j+1

xy=02k+1)(2j+1)

= 4kj + 2k +2j (1)

=202kj +k+j)+1 0




Direct Proof.

Prove:

A 1f5|2a for a € Z, then 5|a.

Assume 5|2a, ¥ a € Z.

5] = 2a some j € Z.
Fh
even

odd 5(2k) = 2a

even j = 2k for some k € Z Sk =a 5|a

/



Direct Proof.

Prove:

Q1f7|4a for a € Z, then 7|a.

Qd Every odd integeris a difference of two squares. (13 = 72 — 62)




Direct Proof.

d Every odd integeris a difference of two squares. (13 = 72 — 62)

1=1% - 02
3=12%_-12
v 5 — 32 22

2k +1 = (k + 1)% — k?

= k% + 2k + 1 — k?

=2k+1

v

ANSHER

2(0) +1=1%-07

trial-and-error method

— 92 2
2(1) +1=2°-1 Trial and error is a fundamental method of
problem-solving. It is characterized by

2 2 repeated, varied attempts which are
2(2) +1=3°-2 continued until success, or until the

practicer stops trying.

E.g. 2(69)+1=139=70%—69°



Direct Proof.

O if m and n are both perfect squares, then nm is also a perfect square.

2 An integer that can be expressed as the square
@ m=S of another integer is called a perfect square.

O
S
=
]

s’ t?=s-st-t=s-t-s-t=(st)?

+



Direct Proof.

x + y This is called the
O Prove that if x and y are nonnegative real numbers, then: > \/xy Arithmetic-Geometric
2 Mean Inequality.

7 =V v
x+y)2 2
=
( 5 = (Vxy v
x%+ 2xy + y? —~
> Al
4 =Xy v
x% +2xy +y* = 4xy -\‘*

"-"\
x*+2xy +y*—4xy =0 3

"-"N\
x*—2xy+y*=0 3

(x=¥)*=0 #



Direct Proof.

Practice
Makes
Perfect

» Use a direct proof to show that the sum of two odd integers is even.

» Prove that if n and m are positive, even integers, then nm is divisible by 4.

» A perfect number is a positive integer n such that the sum of the factors of n is equal to
2n (1 and n are considered factors of n). So, 6 is a perfect number since 1 +2+3+6 = 12
= 2x6. Prove that a prime number cannot be a perfect number.

For any prime number P, its
divisors are P and 1. The
sum of these divisors is
(P+1), which is always less
than 2P.

> If x and y are integers and x? + y? is even, prove that x + y is even.



Proof by Case

Prove: p VY — x

Assume ¢

Show x
Assume

Show x

(If either ¢ (phi) or Y(psi) is true,
then x is true)

Prove:

If n € Z, n®> + 3n + 4 is even

Case 1: nis odd

Qk+1)?+3R2k+1) +4
=4k’ +4k +1+6k+3+4

= 4k*+ 10k + 8

Case 2: nis even
(2k)? + 3(2k) + 4
= 4k* + 6k + 4



Proof by Case

U Prove: If m + n and n 4+ p are even, where m,n,p € Z, then m + p is even.

d Prove: If x, y € R, then max(x, y) + min(x,y) = x + y.



Proof by Case

4 Prove: If m + n and n + p are even, where m,n,p € Z, then m + p is even.

Case 1:

m + n = even so, there are 2 possibilities:
» m and n are both even

» m and n are both odd

Case 2:

n + p = even so, there are 2 possibilities:
» n and p are both even

» n and p are both odd

v If nis even, then from the first case, m has to be even and from the second case, p has to be even - hence, m + p = even
v If nis odd, then from the first case, m has to be odd and from the second case, p has to be odd - hence, m + p =even

So, m + p is always even



Proof by Case

d Prove: If x,y € R, then max(x,y) + min(x,y) = x + y.

*+ How many cases are there?

Casel: x>y Case2: x<y
min(x,y) =y s min(x,y) = x
max(x,y) = x max(x,y) =y

x+y Xty



X =++a

Proof by Case

x| =a

1 Prove that for all x € R,

—5<|x+2|—-|x—3| <5

Case1: x<-2: —5<—-(x+2)+(x—-3) <5
Case2: —-2<x<3: —5<(x+2)+(x—-3) <5
Case3: x> 3: —5<(x+2)—(x—-3) <5

For any real number x, prove |x — 6] + x > 3




By Cases and Direct Proof.

JIf x or y are odd, check if xy is odd.

Case 1: x =2k +1

y=2j+1

Case 2: x = 2k
y=2j+1

Case 3: x =2k +1



Tips for proof by Cases

When the hypothesis is, "n is an integer.”
When the hypothesis is, "m and n are integers."

When the hypothesis is, "z is a real number."

When the hypothesis is, "z is a real number."

When the hypothesis is, "a and b are real numbers."

Case 1:
Case 2:

Case 1:
Case 2:
Case 3:
Case 4:

Case 1:
Case 2:

Case 1:
Case 2:
Case 3:

n is an even integer.
n is an odd integer.

m and n are even.

m is even and n is odd.
m is odd and n is even.
m and n are both odd.

x is rational.
x is irrational.

r=00RCasel: z >0
z#0Case2:z=0
x <0

Casel:a=bORCasel:a =b
Case 2:a#bCase2:a=0>
Case 3:a < b



Proof by Case

Practice
Makes
Perfect

» If nis an integer, prove that n3 — n is even.

> If nis an integer, prove n < n?.

> Ifn € Z, prove n? + 3n + 2 is even.

> Show that if an integer n is not divisible by 3, then n? = 3k + 1 for some integer k.

> Ifn € Z, prove n® + 3n + 5 is an odd integer.

2 __
> If x is a real number such that );Tzl > (0, theneitherx >1or-2<x < -—1.



Proof by Induction

Base Case: 15t thing is true.

Inductive Hypothesis: Assume is true n < k. Show k + 1 is true.

Conclusion: Every n is true.




How Mathematical Induction Works

Consider an infinite sequence of dominoes, labeled
1,2,3, ..., where each domino is standing.

Let P(n) be the proposition that the nth domino is
knocked over. Know that the first domino is
knocked down, i.e., P(1) is true. We also know that
if whenever the kth domino is knocked over, it
knocks over the (k + 1)th domino, i.e,
P(k) —» P(k + 1)istrue for all positive integers k.
Hence, all dominos are knocked over. P(n) is true
for all positive integers n.

U

N

Climbing an Infinite Ladder

v' BASIS STEP: we can reach
rung 1.

v' INDUCTIVE STEP: Assume
the inductive hypothesis that
we can reach rung k. Then
we canreachrung k + 1.

Hence, P(k) - P(k + 1) is

true for all positive integers k.

We can reach every rung on the

ladder.
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# Why Base Case?

@~ Recursive functions are functions that calls itself. It is always =
made up of 2 portions, the base case and the recursive case. The |
base case is the condition to stop the recursion. The recursive R “"(' UQ SIO N

case is the part where the function calls on itself.

@ The base case is a way to return Wlthout making a recursive call. Trace Recursive factorial
In other words, it is the mechanism that stops this process of
ever more recursive calls and an ever-growing stack of function / returns factorial(4) ]
calls waiting on the return of other function calls. factoralid
Step 9: retum 24 , Step 0: executes factorial(4) _—
. . . . return 4 * factorial(3)
@ If a recursion never reaches a base case, it will go on making St (U [0 1:excmes i
recursive calls forever and the program will never terminate. This return 3 * factoral(2)
. . « . . . . . ) Step 2: executes factorial(2)
i1s known as infinite recursion, and it is generally not considered e T
a good idea. In most programming environments, a program —— 03 encutes i
with an infinite recursion will not really run forever. R e SN | o=
e — <'J(Slep 4: executes factorial(0) |
— Main function
return 1




Proof by Induction

Show 1+2+ - +n =200

Base Case: Assumen =1.

1_1(1+1)
2

Inductive Hypothesis: Assume n < k is true.

k(k + 1)
2

142+ +k=

Show k + 1 is true.

1+24 - +kl+(k+1)=

(k+1)(k +2)

2
k(k2+ D, a2 & 1)2(k +2)

k(k+1) +2(k+1) k*+3k+2
2 B 2

k2+k+2k+2_k2+3k+2
2 B 2

k2+3k+2_k2+3k+2
2 B 2

k = k + 1 is true, inductively proved.



Proof by Induction

Prove that n® + 2n is divisible by 3 vn € Z*

Base: Assumen = 1.

(k+1)342(k+1)=k3+3k*+3k+1+2k +2
\ )
\
3
Pt+2x1=3 =2 = k3 +3k2+ 5k + 3
[.LH: Assumen =k is true % :_|_ 3k2 + 3k + 3
3 =
3|(k3+2k) 2 =+ 3k +k+1)
=
— 1,3 +
[37”_1‘ B mEZ} =3m+k2+k+1)
\ )
Y
Show n = k + 1 is true. €z

3In®+ 2n,vn € Z

G 3 (k+1)3+2(k+1)



Proof by Induction

Prove that 2" < n!forn € Z* and n > 3.

AN

Base: Assumen = 4.

(2% = 16) < (4! = 24)

[.H: Assume n = kis true.

2k < k!

Shown = k + 1 is true.

n=4

2<4

k+1>4

h

kL — 2k .2 <« k1 (k+1) = (k+ 1!

k = k + 1 is true, inductively proved.

2"<nlforneZ andn > 3

k+1>2




Proof by Induction with Derivatives

Show that f(x) = x™ implies f'(x) = nx" ! foralln > 1.

Base: Assumen = 1.

fx)=x flx)y=1xY =1

f(X) — xk+1 k

X

[.LH: Assumen =k is true. Fl(x) = kx® 1y +x% -1

flx) = x* f'(x) = kx*1

= kx® + x*

=xk(k +1)

Shown = k + 1 is true.




Proof by Induction with Matrices

n
Show that A = [g 2] implies A" = [% bon] foralln > 1.

Base: Assumen = 1.
1 _ a 0 _ [al O]
A [0 b] 0 b!

[.H: Assume n = k is true.

el A 8

k :[aka+0-0 ak-0+0-pk
Ak =% bok 0-a+bk-0 0-0+bkb
0
k+1
Show n = k + 1 is true. — [a 0 bk0+1



Proof by Induction

» Prove that }),/_,2i = n(n + 1).

> Prove that n® — n is divisible by 3 for any integer n = 0.

n

> P [a ]n— a® na"| | numb
rove O a = O an or every natural numbper n.

[PRA CTICE|:
weucee |3




Proof by Contradiction

We want to prove ¢

1. Assume —¢@
2. Find some contradiction Y A =

3. Claim ——¢
=@




Proof by Contradiction

P
Show that /2 is irrational.

Assume /2 is rational.

a(even)
a _ b(even
V2 = -, where a, b in lowest terms ( )
b not in lowest terms
a2
‘=

by contradiction 2 not rational

4

2b? =a® - a?iseven = (a- a)even — ais even
2b? = (2k)?

2b% = 4k*?

b%2 =2k? > b?iseven » b is even



Proof by Contradiction

Provethat (A—B)n (B — A) = Q.

|

(ANB)N(BNA) =9
Assume (ANB)N(BNA) =0
Ix e U |x € (AN B) N (B N A))
x€EANBandx€BNA

x€EAandxeBandxeBandx € A

by contradiction set is empty @



Proof by Contradiction

L Show that at least four of any 22 days must fall on the same day of the week.

p = {at least four of 22 chosen days fall on the same day of the week}
—p is true (not 4,3 days)

Suppose, within 22 days we can have 3 same week days.

21 days but this contradicts the premise that we have 22 days under consideration.

/

7 days in a week II



Proof by Contradiction

» Give a proofby contradiction of the theorem “If 3n + 2 Is odd, thenn is odd.”

» Show that at least ten of any 64 days chosen must fall on the same day of the week.

» Show that if you pick three socks from a drawer containing just blue socks and black
socks, you must get either a pair of blue socks or a pair of black socks.

» Prove thatif n is a perfect square, then n + 2 is not a perfect square.

» Use a proof by contradiction to prove that the sum of an irrational number and a rational
number is irrational.



Review your
notes daily

to keep them fresh
in your mind.



Practice

time @



Direct proof

» Prove that if m and n are integers and mn is even, then m is even or n is even.

» Prove that if x is irrational, then 1/x is irrational.

» Prove that if x is rational and x # 0, then 1/x is rational.

» Use a direct proof to show that the product of two rational numbers is rational.

» Prove that if n is a positive integer, then nis even if and only if 7n + 4 is even.

» Prove that if n is a positive integer, then n is odd if and only if 5n + 6 is odd.

" POSSIBLE



Proof by Cases

Prove that if n is an integer, then 3n® + n+ 14 is even

Prove that if n is an integer, then 2n? + n + 1 is not divisible by 3

Vx € R prove if |x — 3| > 3 then x? > 6x

Prove that the equation 2x2 + y? = 14 has no positive integer solutions.

If x and y are integers and both x - y and x + y are even, then both x and y are even.
Prove that if m and n are consecutive integers, then the sum m + n is odd.

Let x,y € Z, prove that x and y are of the same parity if and only if x + y is even.



Proof by Induction ‘ ,%}‘,’T‘.', .

» Prove that:

143+5+-+(2n—1) =n?

> Prove that:

nn+1)2n + 1)

1+4+9+--+n?= c

» Prove that 9" 4 3 is divisible by 4.

» Suppose ay =1, a; = 2 and for everyn > 1, a,, = 3a,_1 — 2a,_,. Find a simple formula for
the value of a,, and prove that it is correct.

» Prove that any n > 8 can be expressed as 3x + 5y wherex > 0and 0 < y < 3.



Proof by Contradiction

Supposen € Z.Ifn?is odd, thenn is odd.

Ifa,b € Z,thena’?—4b—2 # 0

Ifa,b € Z thena?—4b -3 # 0
If A and B are sets,then4A N (B — A) = 0.

There exist no integers a and b for which 21a + 30b = 1.
There exist no integers a and b for which 18a + 6b = 1.
Foreveryn € Z,4t (n? + 2)

Show that if n is an integer and n® + 5 is odd, then n is even.



| HELPFUL

TIPS

a

YERYd o i B
V YOUR

REVIE!

‘u
\
[N 1_= .

NOTES LATER
IN THE DAY

Reviewing your notes
after class, will help
you to retain the
information much
more effectively.

S 2IPVAP L AP JANUARY ———
REVIEW THE S ——
= \r] [_\T E Q [ ,L\_‘ L % = e s
g g A = 8 V! E—
P\ - 'C'.‘v LI L AR :__\:"( 5./::

® Instead of waiting
until the day before

u y lp your test to start
studying, go over it

during brief sessions ; —
throughout the month.
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