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Why Study 
Proofs?

➢ How can we guarantee they 
work?

➢ Computing systems are doing so much:

➢ Many advanced topics in computer 
science, such as cryptography, 
artif icial intelligence, and formal 
verif ication, heavily rely on proofs. 
Understanding proofs lays a solid 
foundation for comprehending and 
working with these complex topics.



Why Study Proofs?

Why not just testing?

− Integrates well with programming

− No new languages, tools required

− Conclusive evidence for bugs

Because…

− Diff icult to assess coverage

− Cannot demonstrate absence of bugs

− No guarantees for safety-critical systems

Formal Verification

1. SOFTWARE

− If you want to debug a program beyond a doubt, 
prove that it’s bug-free! Deduction and proof 
provides universal guarantees.

2. HARDWARE

− Proof-theory has recently also been shown to be 
useful in discovering bugs in pre-production 
hardware.

https://cse.buffalo.edu/~erdem/cse331/support/proofs/index.html 

https://cse.buffalo.edu/~erdem/cse331/support/proofs/index.html


https://www.moritz.systems/blog/an-introduction-to-formal-verification/ 

https://lamport.azurewebsites.net/tla/industrial-use.html
https://www.moritz.systems/blog/an-introduction-to-formal-verification/


Objectives
✓ Direct Proof

✓ Proof by Case

✓ Proof by Induction

✓ Proof by Contradiction



Terminology

❑ Definition: Something given (no proof)

E.g.    Let 𝑀 =
1 2
3 4

❑ Theorem: Something to be proved

Results corollary (sub-proofs): any number divisible by 2 is even.



Direct Proof.

If 𝜑, then 𝜑.

Assume 𝜑.

Show that 𝜑.

Prove: If 𝑥 is odd, then 𝑥2 is odd.

Assume 𝑥 is odd. Odd number: 𝑥 = 2𝑛 + 1

𝑥2 = (2𝑛 + 1)2

= 4𝑛2 + 4𝑛 + 1

= 2(2𝑛2 + 2𝑛) + 1

𝑘



Prove:

If 𝑥, 𝑦 are odd, then 𝑥𝑦 is odd.

𝑥 = 2𝑘 + 1

𝑦 = 2𝑗 + 1

𝑥𝑦 = (2𝑘 + 1)(2𝑗 + 1)

= 4𝑘𝑗 + 2𝑘 + 2𝑗 + 1

odd

Direct Proof.

= 2(2𝑘𝑗 + 𝑘 + 𝑗) + 1



Prove:

❑ If 5|2𝑎 for 𝑎 ∈ ℤ, then 5|𝑎.

Assume 5|2𝑎 , ⩝ 𝑎 ∈ ℤ.

5𝑗 = 2𝑎 some 𝑗 ∈ ℤ.

even
odd

even 𝑗 = 2𝑘 for some 𝑘 ∈ ℤ

5(2𝑘) = 2𝑎

5𝑘 = 𝑎 5|𝑎

Direct Proof.



Prove:

❑ If 7|4𝑎 for 𝑎 ∈ ℤ, then 7|𝑎.

❑ Every odd integer is a difference of two squares. (13 = 72 − 62)

Direct Proof.



❑ Every odd integer is a difference of two squares. (13 = 72 − 62)

1 = 12 − 02

3 = 22 − 12

5 = 32 − 22

2𝑘 + 1 = (𝑘 + 1)2 − 𝑘2

2 0 + 1 = 12 − 02

2 1 + 1 = 22 − 12

2 2 + 1 = 32 − 22

= 𝑘2 + 2𝑘 + 1 − 𝑘2

= 2𝑘 + 1

E.g.  2 69 + 1 = 139 = 702 − 692

Direct Proof.

trial-and-error method

Trial and error is a fundamental method of 
problem-solving. It is characterized by 
repeated, varied attempts which are 
continued until success, or until the 
practicer stops trying. 



❑ if 𝑚 and 𝑛 are both perfect squares, then nm is also a perfect square.

𝑚 = 𝑠2  

𝑛 = 𝑡2

𝑚 ∙ 𝑛 = 𝑠2 ∙ 𝑡2 = 𝑠 ∙ 𝑠 ∙ 𝑡 ∙ 𝑡 = 𝑠 ∙ 𝑡 ∙ 𝑠 ∙ 𝑡 = (𝑠𝑡)2

Direct Proof.

An integer that can be expressed as the square 
of another integer is called a perfect square.



Direct Proof.

❑ Prove that if 𝑥 and 𝑦 are nonnegative real numbers, then:
𝑥 + 𝑦

2
≥ 𝑥𝑦

This is called the 
Arithmetic-Geometric 

Mean Inequality.

𝑥 + 𝑦

2
≥ 𝑥𝑦

𝑥 + 𝑦

2

2

≥ 𝑥𝑦 2

𝑥2 + 2𝑥𝑦 + 𝑦2

4
≥ 𝑥𝑦

𝑥2 + 2𝑥𝑦 + 𝑦2 ≥ 4𝑥𝑦

𝑥2 + 2𝑥𝑦 + 𝑦2 − 4𝑥𝑦 ≥ 0

𝑥2 − 2𝑥𝑦 + 𝑦2 ≥ 0

(𝑥 − 𝑦)2≥ 0



➢ Use a direct proof to show that the sum of two odd integers is even.

➢ Prove that if n and m are positive, even integers, then nm is divisible by 4.

➢ A perfect number is a positive integer n such that the sum of the factors of n is equal to 
2n (1 and n are considered factors of n). So, 6 is a perfect number since 1 +2+3+6 = 12 
= 2∗6. Prove that a prime number cannot be a perfect number.

➢ If 𝑥 and 𝑦 are integers and 𝑥2 + 𝑦2 is even, prove that 𝑥 + 𝑦 is even.

Direct Proof.

For any prime number P, its 
divisors are P and 1. The 
sum of these divisors is 
(P+1), which is always less 
than 2P.



Proof by Case

Prove: 𝜑 ∨ 𝜓 → 𝑥 

Assume  𝜑 

Show 𝑥 

Assume 𝜓

Show 𝑥 

Prove:

If 𝑛 ∈ ℤ, 𝑛2 + 3𝑛 + 4 is even

Case 1:  𝑛 is odd

(2𝑘 + 1)2 + 3 2𝑘 + 1 + 4

= 4𝑘2 + 4𝑘 + 1 + 6𝑘 + 3 + 4

= 4𝑘2 + 10𝑘 + 8

Case 2:  𝑛 is even

(2𝑘)2 + 3 2𝑘 + 4

= 4𝑘2 + 6𝑘 + 4

(If either 𝜑 (phi) or 𝜓(psi) is true, 
then 𝑥 is true)



❑ Prove: If 𝑚 + 𝑛 and 𝑛 + 𝑝 are even, where 𝑚, 𝑛, 𝑝 ∈ ℤ, then 𝑚 + 𝑝 is even. 

❑ Prove: If 𝑥, 𝑦 ∈ ℝ, then max 𝑥, 𝑦 + min 𝑥, 𝑦 = 𝑥 + 𝑦.

Proof by Case



❑ Prove: If 𝑚 + 𝑛 and 𝑛 + 𝑝 are even, where 𝑚, 𝑛, 𝑝 ∈ ℤ, then 𝑚 + 𝑝 is even. 

Proof by Case

Case 1:
𝒎 +  𝒏 = even so, there are 2 possibilities:
➢ 𝑚 and 𝑛 are both even
➢ 𝑚 and 𝑛 are both odd

Case 2:
𝒏 +  𝒑 = even so, there are 2 possibilities:
➢ 𝑛 and 𝑝 are both even
➢ 𝑛 and 𝑝 are both odd

✓ If 𝑛 is even, then from the first case, 𝑚 has to be even and from the second case, 𝑝 has to be even - hence, 𝑚 +  𝑝 = even
✓ If 𝑛 is odd, then from the first case, 𝑚 has to be odd and from the second case, 𝑝 has to be odd - hence, 𝑚 +  𝑝 = even

So, 𝒎 +  𝒑 is always even



❖ How many cases are there?

❑ Prove: If x, y ∈ ℝ, then max 𝑥, 𝑦 + min 𝑥, 𝑦 = 𝑥 + 𝑦.

Case 1:     𝑥 ≥ 𝑦 Case 2:     𝑥 < 𝑦

min 𝑥, 𝑦 = 𝑦

max 𝑥, 𝑦 = 𝑥
+

𝑥 + 𝑦

min 𝑥, 𝑦 = 𝑥

max 𝑥, 𝑦 = 𝑦
+

𝑥 + 𝑦

Proof by Case



❑ Prove that for all  𝑥 ∈ ℝ, 

−5 ≤ 𝑥 + 2 − 𝑥 − 3 ≤ 5

Case 1:

Case 2:

Case 3:

𝒙 ≤ −𝟐:

−𝟐 < 𝒙 ≤ 𝟑:

𝒙 > 𝟑:

−5 ≤ − 𝑥 + 2 + (𝑥 − 3) ≤ 5

−5 ≤ 𝑥 + 2 + (𝑥 − 3) ≤ 5

−5 ≤ 𝑥 + 2 − (𝑥 − 3) ≤ 5

−2 3

For any real number 𝑥, prove 𝑥 − 6 + 𝑥 > 3

Proof by Case



By Cases and Direct Proof.

𝑥 = 2𝑘 + 1

𝑦 = 2𝑗 + 1

❑If 𝑥 𝒐𝒓 𝑦 are odd, check if 𝑥𝑦 is odd.

Case 1:

Case 2:

Case 3:

𝑥 = 2𝑘

𝑦 = 2𝑗 + 1

𝑥 = 2𝑘 + 1

𝑦 = 2𝑗



Tips for proof by Cases



➢ If 𝑛 is an integer, prove that 𝑛3 − 𝑛 is even.

➢ If 𝑛 is an integer, prove 𝑛 ≤ 𝑛2.

➢ If 𝑛 ∈ ℤ, prove 𝑛2 + 3𝑛 + 2 is even.

➢ Show that if an integer 𝑛 is not divisible by 3, then 𝑛2 = 3𝑘 + 1 for some integer 𝑘.

➢ If 𝑛 ∈ ℤ, prove 𝑛2 + 3𝑛 + 5 is an odd integer.

➢ If 𝑥 is a real number such that 
𝑥2−1

𝑥+2
> 0, then either 𝑥 > 1 or −2 < 𝑥 < −1.

Proof by Case



Proof by Induction

Base Case:   1st thing is true.

Inductive Hypothesis:  Assume is true 𝑛 ≤ 𝑘. Show 𝑘 + 1 is true.

Conclusion:  Every 𝑛 is true.



Consider an inf inite sequence of dominoes, labeled 
1,2,3, … , where each domino is standing. 
Let 𝑃(𝑛) be the proposition that the 𝑛𝑡ℎ domino is 
knocked over. Know that the f irst domino is 
knocked down, i.e., 𝑃(1) is true. We also know that 
if whenever the 𝑘𝑡ℎ domino is knocked over, it 
knocks over the 𝑘 +  1 𝑡ℎ domino, i.e,         
𝑃(𝑘)  →  𝑃(𝑘 +  1) is true for all positive integers 𝑘. 
Hence, all dominos are knocked over. 𝑃(𝑛) is true 
for all positive integers n.

How Mathematical Induction Works 

Climbing an Infinite Ladder 

✓ BASIS STEP: we can reach 
rung 1. 

✓  INDUCTIVE STEP: Assume 
the inductive hypothesis that 
we can reach rung 𝑘. Then 
we can reach rung 𝑘 +  1.

Hence, 𝑃(𝑘)  →  𝑃(𝑘 +  1) is 
true for all positive integers 𝑘. 
We can reach every rung on the 
ladder. 



Recursive functions are functions that calls itself. It is always 
made up of 2 portions, the base case and the recursive case. The 
base case is the condition to stop the recursion. The recursive 
case is the part where the function calls on itself.

The base case is a way to return without making a recursive call. 
In other words, it is the mechanism that stops this process of 
ever more recursive calls and an ever-growing stack of function 
calls waiting on the return of other function calls.

If a recursion never reaches a base case, it will go on making 
recursive calls forever and the program will never terminate. This 
is known as inf inite recursion, and it is generally not considered 
a good idea. In most programming environments, a program 
with an inf inite recursion will not really run forever.

Why Base Case?



Show   1 + 2 + ⋯ + 𝑛 =
𝑛(𝑛+1)

2

Base Case:   Assume n = 1.

1 =
1(1 + 1)

2

Inductive Hypothesis:  Assume 𝑛 ≤ 𝑘 is true. 

1 + 2 + ⋯ + 𝑘 =
𝑘(𝑘 + 1)

2

Show 𝑘 + 1 is true.

1 + 2 + ⋯ + 𝑘 + (𝑘 + 1) =
(𝑘 + 1)(𝑘 + 2)

2

𝑘(𝑘 + 1)

2
+ 𝑘 + 1 =

(𝑘 + 1)(𝑘 + 2)

2

𝑘 𝑘 + 1 + 2(𝑘 + 1)

2
=

𝑘2 + 3𝑘 + 2

2

𝑘2 + 𝑘 + 2𝑘 + 2

2
=

𝑘2 + 3𝑘 + 2

2

𝑘2 + 3𝑘 + 2

2
=

𝑘2 + 3𝑘 + 2

2

𝑘 ⟹ 𝑘 + 1 is true, inductively proved.

Proof by Induction



Proof by Induction

Prove that 𝑛3 + 2𝑛 is divisible by 3 ∀𝑛 ∈ ℤ+

Base:   Assume n = 1.

13 + 2 × 1 = 3 3

3

I.H:   Assume n = k is true.

3|(𝑘3+2𝑘)

3𝑚 = 𝑘3 + 2𝑘, 𝑚 ∈ ℤ+

Show n = 𝑘 + 1 is true.

(𝑘 + 1)3+2 𝑘 + 1 = 𝑘3 + 3𝑘2 + 3𝑘 + 1 + 2𝑘 + 2

= 𝑘3 + 3𝑘2 + 5𝑘 + 3

= 𝑘3 + 2𝑘 + 3𝑘2 + 3𝑘 + 3

= 3𝑚 + 3(𝑘2 + 𝑘 + 1)

= 3(𝑚 + 𝑘2 + 𝑘 + 1)

3|(𝑘 + 1)3+2(𝑘 + 1)3|𝑛3 + 2𝑛, ∀𝑛 ∈ ℤ

∈ ℤ

=



Proof by Induction

Prove that 2𝑛 < 𝑛! for 𝑛 ∈ ℤ+ and 𝑛 > 3.

𝑛 ≥ 4Base:   Assume n = 4.

I.H:   Assume n = k is true.

(24 = 16) < (4! = 24)

2𝑘 < 𝑘!

Show n = 𝑘 + 1 is true.

2𝑘+1 = 2𝑘 ∙ 2 < 𝑘! 𝑘 + 1 = 𝑘 + 1 !

𝑘 ⟹ 𝑘 + 1 is true, inductively proved.

2𝑛 < 𝑛! for 𝑛 ∈ ℤ+ and 𝑛 > 3

2 < 4

𝑘 + 1 ≥ 4

𝑘 + 1 > 2



Proof by Induction with Derivatives

Show that f x = 𝑥𝑛 implies f ′ x = n𝑥𝑛−1 for all 𝑛 ≥ 1.

Base:   Assume n = 1.

I.H:   Assume n = k is true.

Show n = 𝑘 + 1 is true.

𝑓 𝑥 = 𝑥 𝑓′ 𝑥 = 1𝑥0 = 1

𝑓 𝑥 = 𝑥𝑘 𝑓′ 𝑥 = 𝑘𝑥𝑘−1

𝑓 𝑥 = 𝑥𝑘+1 = 𝑥𝑘𝑥

𝑓 ′(𝑥) = 𝑘𝑥𝑘−1𝑥 + 𝑥𝑘 ⋅ 1

= 𝑘𝑥𝑘 + 𝑥𝑘

= 𝑥𝑘(𝑘 + 1)



Proof by Induction with Matrices

Show that A =
𝑎 0
0 𝑏

 implies 𝐴𝑛 =
𝑎𝑛 0
0 𝑏𝑛  for all 𝑛 ≥ 1.

Base:   Assume n = 1.

I.H:   Assume n = k is true.

Show n = 𝑘 + 1 is true.

𝐴1 =
𝑎 0
0 𝑏

= 𝑎1 0
0 𝑏1

𝐴𝑘 = 𝑎𝑘 0
0 𝑏𝑘

𝐴𝑘+1 = 𝐴𝑘𝐴 = 𝑎𝑘 0
0 𝑏𝑘

𝑎 0
0 𝑏

= 𝑎𝑘𝑎 + 0 ⋅ 0 𝑎𝑘 ⋅ 0 + 0 ⋅ 𝑏𝑘

0 ⋅ 𝑎 + 𝑏𝑘 ⋅ 0 0 ⋅ 0 + 𝑏𝑘𝑏

= 𝑎𝑘+1 0
0 𝑏𝑘+1



➢ Prove that σ𝑖=0
𝑛 2𝑖 = 𝑛 𝑛 + 1 .

➢ Prove that 𝑛3 − 𝑛 is divisible by 3 for any integer n ≥ 0.

Proof by Induction

➢ Prove 
𝑎 1
0 𝑎

𝑛

= 𝑎𝑛 𝑛𝑎𝑛−1

0 𝑎𝑛  for every natural number 𝑛.



Proof by Contradiction

We want to prove 𝜑

1. Assume ¬𝜑

2. Find some contradiction 𝜓 ∧ ¬𝜓

3. Claim ¬¬𝜑

= 𝜑



Proof by Contradiction

Show that 2 is irrational.

𝜑

Assume 2 is rational.

2 =
𝑎

𝑏
, 𝑤ℎ𝑒𝑟𝑒 𝑎, 𝑏 𝑖𝑛 𝑙𝑜𝑤𝑒𝑠𝑡 𝑡𝑒𝑟𝑚𝑠

2 =
𝑎2

𝑏2

2𝑏2 = 𝑎2 → 𝑎2 𝑖𝑠 𝑒𝑣𝑒𝑛 → 𝑎 ∙ 𝑎 𝑒𝑣𝑒𝑛 → 𝑎 𝑖𝑠 𝑒𝑣𝑒𝑛

2𝑏2 = (2𝑘)2

2𝑏2 = 4𝑘2

𝑏2 = 2𝑘2 → 𝑏2 𝑖𝑠 𝑒𝑣𝑒𝑛 → 𝑏 𝑖𝑠 𝑒𝑣𝑒𝑛

𝑎(𝑒𝑣𝑒𝑛)

𝑏(𝑒𝑣𝑒𝑛)

𝑏𝑦 𝑐𝑜𝑛𝑡𝑟𝑎𝑑𝑖𝑐𝑡𝑖𝑜𝑛 2 not rational

𝑛𝑜𝑡 𝑖𝑛 𝑙𝑜𝑤𝑒𝑠𝑡 𝑡𝑒𝑟𝑚𝑠



Proof by Contradiction

Prove that 𝐴 − 𝐵 ∩ 𝐵 − 𝐴 = ∅.

Assume 𝐴 ∩ ത𝐵 ∩ 𝐵 ∩ ҧ𝐴 ≠ ∅ 

𝐴 ∩ ത𝐵 ∩ 𝐵 ∩ ҧ𝐴 = ∅

∃𝑥 ∈ 𝑈 | 𝑥 ∈ ((𝐴 ∩ ത𝐵) ∩ (𝐵 ∩ ҧ𝐴)) 

𝑥 ∈ 𝐴 ∩ ത𝐵 and 𝑥 ∈ 𝐵 ∩ ҧ𝐴

𝑥 ∈ 𝐴 and 𝑥 ∈ ത𝐵 and 𝑥 ∈ 𝐵 and 𝑥 ∈ ҧ𝐴

𝑏𝑦 𝑐𝑜𝑛𝑡𝑟𝑎𝑑𝑖𝑐𝑡𝑖𝑜𝑛 set is empty ∅



Proof by Contradiction

❑ Show that at least four of any 22 days must fall on the same day of the week.

𝑝 = {𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑓𝑜𝑢𝑟 𝑜𝑓 22 𝑐ℎ𝑜𝑠𝑒𝑛 𝑑𝑎𝑦𝑠 𝑓𝑎𝑙𝑙 𝑜𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑑𝑎𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑤𝑒𝑒𝑘}

¬𝑝 𝑖𝑠 𝑡𝑟𝑢𝑒 (𝑛𝑜𝑡 4, 𝟑 𝒅𝒂𝒚𝒔)

21 𝑑𝑎𝑦𝑠 𝑏𝑢𝑡 𝑡ℎ𝑖𝑠 𝑐𝑜𝑛𝑡𝑟𝑎𝑑𝑖𝑐𝑡𝑠 𝑡ℎ𝑒 𝑝𝑟𝑒𝑚𝑖𝑠𝑒 𝑡ℎ𝑎𝑡 𝑤𝑒 ℎ𝑎𝑣𝑒 22 𝑑𝑎𝑦𝑠 𝑢𝑛𝑑𝑒𝑟 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑎𝑡𝑖𝑜𝑛. 

𝑆𝑢𝑝𝑝𝑜𝑠𝑒, 𝑤𝑖𝑡ℎ𝑖𝑛 22 𝑑𝑎𝑦𝑠 𝑤𝑒 𝑐𝑎𝑛 ℎ𝑎𝑣𝑒 3 𝑠𝑎𝑚𝑒 𝑤𝑒𝑒𝑘 𝑑𝑎𝑦𝑠.

7 𝑑𝑎𝑦𝑠 𝑖𝑛 𝑎 𝑤𝑒𝑒𝑘 



➢ Give a proof by contradiction of the theorem “If 3n + 2 is odd, then n is odd.”

➢ Show that at least ten of any 64 days chosen must fall on the same day of the week.

➢ Show that if you pick three socks from a drawer containing just blue socks and black 

socks, you must get either a pair of blue socks or a pair of black socks.

➢ Prove that if n is a perfect square, then n + 2 is not a perfect square.

Proof by Contradiction

➢ Use a proof by contradiction to prove that the sum of an irrational number and a rational

number is irrational.





Practice 
time



Direct proof 

➢ Prove that if m and n are integers and mn is even, then m is even or n is even. 

➢ Prove that if x is irrational, then 1/x is irrational. 

➢ Prove that if x is rational and x ≠ 0, then 1/x is rational. 

➢ Use a direct proof to show that the product of two rational numbers is rational. 

➢ Prove that if n is a positive integer, then n is even if and only if 7n + 4 is even. 

➢ Prove that if n is a positive integer, then n is odd if and only if 5n + 6 is odd.



➢ Prove that if n is an integer, then 3𝑛2 + 𝑛 + 14 is even

➢ Prove that if n is an integer, then 2𝑛2 + 𝑛 + 1 is not divisible by 3

➢ ∀𝑥 ∈ ℝ prove if 𝑥 − 3 > 3 then 𝑥2 > 6𝑥

➢ Prove that the equation 2𝑥2 + 𝑦2 = 14 has no positive integer solutions.

Proof by Cases

➢ If 𝑥 and 𝑦 are integers and both 𝑥 ∙ 𝑦 and 𝑥 + 𝑦 are even, then both 𝑥 and 𝑦 are even.

➢ Prove that if m and n are consecutive integers, then the sum m + 𝑛 is odd.

➢ Let 𝑥, 𝑦 ∈ ℤ, prove that 𝑥 and 𝑦 are of the same parity if and only if 𝑥 + 𝑦 is even.



Proof by Induction

➢ Prove that:

➢ Prove that:

1 + 3 + 5 + ⋯ + 2𝑛 − 1 = 𝑛2

1 + 4 + 9 + ⋯ + 𝑛2 =
𝑛(𝑛 + 1)(2𝑛 + 1)

6

➢ Suppose 𝑎0 = 1, 𝑎1 = 2 and for every 𝑛 > 1, 𝑎𝑛 = 3𝑎𝑛−1 − 2𝑎𝑛−2. Find a simple formula for 
the value of 𝑎𝑛 and prove that it is correct.

➢ Prove that any 𝑛 ≥ 8 can be expressed as 3𝑥 + 5𝑦 where 𝑥 ≥ 0 and 0 ≤ 𝑦 < 3.

➢ Prove that 9𝑛 + 3 is divisible by 4. 



➢ Suppose 𝑛 ∈  𝑍. If 𝑛2 is odd, then n is odd.

➢ If 𝑎, 𝑏 ∈  𝑍, then 𝑎2 − 4𝑏 − 2 ≠ 0

➢ If 𝑎, 𝑏 ∈  𝑍, then 𝑎2 − 4𝑏 − 3 ≠ 0

➢ If A and B are sets, then 𝐴 ∩ (𝐵 −  𝐴)  =  ∅ .

➢ There exist no integers a and b for which 21𝑎 + 30𝑏 =  1.

➢ There exist no integers a and b for which 18𝑎 + 6𝑏 =  1.

➢ For every 𝑛 ∈  𝑍, 4∤ (𝑛2 + 2)

Proof by Contradiction 

➢ Show that if n is an integer and 𝑛3 +  5 is odd, then n is even. 



Study Tip
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