
Modifiers, Inheritance and Method
Overriding

Wisam Abdulaziz Qadir

Wisam.abdulaziz@tiu.edu.iq

Tishk International University
Department of Computer Engineering
Object Oriented Programming
Week 6
Fall 2023-24
November 6, 2023

Outline

• Modifiers

• Encapsulation (brief review)

• Inheritance

• Protected

• Object Class

• Method Overriding

Objectives

• Learning the difference between different types of modifiers in Java.

• Learning how to use inheritance.

• Learning how to method Overriding.

Modifiers

We divide modifiers into two groups:

• Access Modifiers: controls access level
• Non-Access Modifiers: provides some functionality

Access Modifiers

For classes

Modifier Description

public The class is accessible by all other classes

default • The class is only accessible by classes in the same package.
• This is used when you don't specify a modifier.

Access Modifiers

For attributes, methods and constructors

Modifier Description

public The code is accessible for all classes

private The code is only accessible within the declared class

default • The code is only accessible in the same package.
• This is used when you don't specify a modifier.

protected The code is accessible in the same package and subclasses.

Non-Access Modifiers

For classes

Modifier Description

final The class cannot be inherited by other classes

abstract The class cannot be used to create objects (To access an abstract class, it
must be inherited from another class.

Non-Access Modifiers

For attributes and methods

Modifier Description

final Attributes and methods cannot be overridden/modified

static Attributes and methods belong to a class, rather than an object

abstract Can only be used in an abstract class, and can only be used on methods. The
method does not have a body, for example abstract void run();. The body is
provided by the subclass (inherited from).

Basics of OOP

• What is it?

A PIE

Abstraction
Polymorphism
Inheritance
Encapsulation

• Each of these 4 are
huge subjects and
together form what is
know as OOP.

Encapsulation

• Encapsulation refers to the bundling (packaging) of fields and methods inside a
single class.

• A class has Attributes and Methods.

• Encapsulation keeps them together.

Area

Width
Length

area()

Encapsulation

• In Encapsulation, Data Hiding can be used to make sure that "sensitive" data is
hidden from users.

• To achieve this, we must:
• declare attributes as private.
• provide public get() and set() to access value of private attributes.

Why Encapsulation?

• Better control of class attributes and methods.

• Class attributes can be made read-only (if you only use the get method), or write-
only (if you only use the set method)

• Flexible: the programmer can change one part of the code without affecting other
parts

• Increased security of data

Inheritance

• In Java, it is possible to inherit attributes and methods from one class to
another.

• We group the "inheritance concept" into two categories:

•superclass (parent class) - the class being inherited from.
•subclass (child class) - the class that inherits from another class.

• To inherit from a class, use the extends keyword.

Inheritance

• Inheritance hierarchy (Inheritance relationships):

• A class becomes

• Superclass

• When it supplies members to other classes

OR

• Subclass

• When it inherits members from other classes

Creating Classes without Using
Inheritance

Student

Name
Email
Phone
Age

GPA

setName()
getName()
setAge()
getAge()

setGPA()
getGPA()

Lecturer

Name
Email
Phone
Age

Salary

setName()
getName()
setAge()
getAge()

setSalary()
getSalary()

Inheritance

Student

Name
Email
Phone
Age
GPA

setName()
getName()
setAge()
getAge()

setGPA()
getGPA()

Lecturer

Name
Email
Phone
Age
Salary

setName()
getName()
setAge()
getAge()

setSalary()
getSalary()

Person

Name
Email
Phone
Age

setName()
getName()
setAge()
getAge()

Inheritance

Student

GPA

setGPA()
getGPA()

Lecturer

SalSary

setSalary()
getSalary()

Person

Name
Email
Phone
Age

setName()
getName()
setAge()
getAge()Note: Constructors are not members, so they cannot

be inherited by subclasses, but the constructor of the
superclass can be invoked from the subclass.

Inheritance

Superclass:
• Person

Subclass:
• Student
• Teacher

Student

Gpa

setGpa()
getGpa()

Lecturer

Salary

setSalary()
getSalary()

Person

Name
Email
Phone
Age

setName()
getName()
setAge()
getAge()

inherits inherits

Inheritance

public class Person
{

private String name;
private int age;

public void setName(String n)
{

name = n;
}

public String getName()
{

return name;
}

public void setAge(int a)
{

age = a;
}

public int getAge()
{

return age;
}

}

public class Student extends Person

{
private double gpa;

public void setGpa(double g)
{

gpa = g;
}

public double getGpa()
{

return gpa;
}

}

public class Lecturer extends Person
{

private double salary;

public void setSalary(double s)
{

salary = s;
}

public double getSalary()
{

return salary;
}

}

public class MainClass
{

public static void main(String[] args)
{

Student s001 = new Student();
s001.setName(“Dara");
s001.setAge(20);
s001.setGpa(3.5);

System.out.println(s001.getName() + “ : ” + s001.getAge() + “ : ” + s001.getGpa());

Lecturer l001 = new Lecturer();
l001.setName(“Dara");
l001.setAge(20);
l001.setSalary(3.5);

System.out.println(l001.getName() + “ : ” + l001.getAge() + “ : ” +
l001.getSalary());

}
}

Protected

• Protected access is Intermediate level of protection between public and private.

• protected members are accessible by

• Class members in the same package

• Subclass members

Protected

• Difference between Public, Private and Protected:

• The public modifier specifies that the member can be accessed in all packages.

• The private modifier specifies that the member can be accessed in its own class only.

• The protected modifier specifies that the member can be accessed within its own
package only, and by its subclasses in other packages.

Protected

public class Date
{

protected int day;
protected int month;
protected int year;

public void displayDate()
{

System.out.println(day+ "/" + month + "/" + year);
}

}

Date.java

public class MainClass {

public static void main(String[] args) {

Date d01 = new Date();
d01.day = 24;
d01.month= 8;
d01.year = 2021;

d01.displayDate();
}

}

24/8/2021

MainClass.java

Note: with protected, we don’t need to use set() and get().

Object Class

• Extending Object class

• Every class in Java extends an existing class, except Object class

• Every class inherits methods of Object class.

• Each new class extends Object class automatically which will be declared by the
Java compiler, if it does not extend any other classes.

Method Overriding

• If subclass (child class) has the same method as declared in the parent class, it is known
as method overriding.

• Why method overriding?

• If a subclass should have some additional implementation of the method that has been
declared by its Superclass.

Method Overriding

• Rules for Java Method Overriding?

• The method must have the same access modifier, return type, method name and
parameter list.

• There must be an IS-A relationship (inheritance).

public class Person {

public void show(){
System.out.println("person");

}
}

public class Student extends Person
{

public void show(){
System.out.println("student");

}
}

public class Lecturer extends Person
{

public void show(){
System.out.println("lecturer");

}
}

public class MainClass {

public static void main(String[] args) {

Person p01 = new Person();
p01.show();

Student s01 = new Student();
s01.show();

Lecturer l01 = new Lecturer();
l01.show();

}
}

Method Overriding

public class Person {
private String name;
private int age;

public void setName(String n)
{

name = n;
}

public String getName()
{

return name;
}

public void setAge(int a)
{

if(a >= 0)
age = a;

else
age = 0;

}

public int getAge()
{

return age;
}

}

public class Student extends Person
{

private double gpa;
private int age;

public void setGpa(double g)
{

gpa = g;
}

public double getGpa()
{

return gpa;
}

public void setAge(int a)
{

if(a >= 18)
age = a;

else
age = 18;

}

public int getAge()
{

return age;
}

}

public class Lecturer extends Person
{

private double salary;
private int age;

public void setSalary(double s)
{

salary = s;
}

public double getSalary()
{

return salary;
}

public void setAge(int a)
{

if(a >= 25)
age = a;

else
age = 25;

}

public int getAge()
{

return age;
}

}

public class MainClass {

public static void main(String[] args) {
Student s01 = new Student();
s01.setAge(19);
System.out.println(s01.getAge());

Lecturer l01 = new Lecturer();
l01.setAge(26);
System.out.println(l01.getAge());

}
}

Method Overriding

person
student
lecturer

References

	Slide 1: Modifiers, Inheritance and Method Overriding
	Slide 2: Outline
	Slide 3: Objectives
	Slide 4: Modifiers
	Slide 5: Access Modifiers
	Slide 6: Access Modifiers
	Slide 7: Non-Access Modifiers
	Slide 8: Non-Access Modifiers
	Slide 9: Basics of OOP
	Slide 10: Encapsulation
	Slide 11: Encapsulation
	Slide 12: Why Encapsulation?
	Slide 13: Inheritance
	Slide 14: Inheritance
	Slide 15: Creating Classes without Using Inheritance
	Slide 16: Inheritance
	Slide 17: Inheritance
	Slide 18: Inheritance
	Slide 19: Inheritance
	Slide 20
	Slide 21
	Slide 22: Protected
	Slide 23: Protected
	Slide 24: Protected
	Slide 25: Object Class
	Slide 26: Method Overriding
	Slide 27: Method Overriding
	Slide 28
	Slide 29: Method Overriding
	Slide 30
	Slide 31: Method Overriding
	Slide 32: References

