
3.1

Tishk International University
Science Faculty
IT Department

Operating Systems

3rd Grade - Fall Semester

Lecture 2: Processes and Threads

Instructor: Alaa Ghazi

Lecture 2:
Processes & Threads

3.3

Agenda
PART 1: Processes
2.1 Process Concept
2.2 Process Parts
2.3 Process States
2.4 Process Control Block (PCB)
2.5 CPU Switch From Process to Process
2.6 Process Scheduling Queues
2.7 Operations on Processes
2.8 Inter-process Communication
PART 2: Threads
2.9 Thread Concept
2.10 Multithreaded Server Architecture Example
2.11 Multithreading Benefits
2.12 Multi-Processor Systems
2.13 Concurrency vs. Parallelism
2.14 Amdahl’s Law

3.4

General Definition of a Process?

PART 1
Processes

3.6

3.1 Process Concept in OS

 Process – is an active program in execution;
process execution must progress in sequential
fashion

 Program is a passive entity stored on disk
(executable file), and it becomes a process
when executable file is loaded into memory

 One program can be executed multiple times
generating multiple processes

3.7

Practical Case
Process Explorer (Freeware)

 It is a freeware shows a list of the currently active
processes,

 It is useful for tracking down problems and provide
insight into the way Windows and applications
work.

3.8

3.2 Process Parts
 Text Section contains the program code.

Data section contains the global variables

Stack contains function parameters, return addresses, and local
variables.

Heap contains dynamically allocated memory during run time.

3.9

3.3 Process States
As a process executes, it changes state to below five states

 new: The process is being created

 running: Instructions are being executed

 waiting: The process is waiting for some event to occur

 ready: The process is waiting to be assigned to a processor

 terminated: The process has finished execution

3.10

Practical Analogy: CPU vs. Doctor
(not required in the exam)

Patient 1 Patient 2 Patient 3

3.11

3.4 Process Control Block (PCB)
PCB is the Information associated

with each process, which includes:

 Process state

 Program counter

 CPU registers

 CPU scheduling information

 Memory-management information

 Accounting information

 I/O status information

Analogy
PCB = Patient Information

3.12

3.5 CPU Switch From Process to Process
(not required in the exam)

3.13

3.6 Process Scheduling Queues

 Process scheduler selects among available processes
for next execution on CPU

 Maintains scheduling queues of processes

 Job queue – set of all processes in the system

 Ready queue – set of all processes residing in main
memory, ready and waiting to execute

 Device queues – set of processes waiting for an I/O
device

 Processes migrate among the various queues

3.14

Process Scheduling Queues Diagram

3.15

3.7 Operations on Processes
1) Process Creation

 Parent process create children processes, which, in
turn create other processes, forming a tree of processes

 Generally, process identified and managed via a
process identifier (pid)

 Resource sharing options:

1. Parent and children share all resources

2. Children share subset of parent’s resources

3. Parent and child share no resources

 Execution options:

1. Parent and children execute concurrently

2. Parent waits until children terminate

3.16

Examples of Tree of Processes
(not required in the exam)

init
pid = 1

sshd
pid = 3028

login
pid = 8415

kthreadd
pid = 2

sshd
pid = 3610

pdflush
pid = 200

khelper
pid = 6

tcsch
pid = 4005

emacs
pid = 9204

bash
pid = 8416

ps
pid = 9298

3.17

2. Process Termination

 Process executes last statement and then asks the
operating system to delete it using a system call.

 Returns status data from child to parent

 Process’ resources are de-allocated by operating
system

 Parent may terminate the execution of children
processes using a system call. Some reasons for doing
so:

 Child has exceeded allocated resources

 Task assigned to child is no longer required

 The parent is exiting

3.18

3.8 Inter-process Communication
 Processes within a system may be independent or

cooperating when they need to share data

 There are two models of inter-process communications
(IPC)

• Shared memory

• Message passing

3.19

Inter-Process Communications Models

(a) Message passing. (b) shared memory.

PART 2
Threads

3.21

3.9 Thread Concept
 The thread is a component of the process and it is the

smallest sequence of instructions that can be managed by
the scheduler

 Multiple threads can exist within one process,
executing concurrently and sharing resources such
as memory.

 Implicit Threading where the creation and management of
threads done by compilers rather than programmers.

 Most modern applications are multithreaded, so tasks with
the application can be implemented by separate threads

 Update display

 Fetch data

 Spell checking

3.22

Single and Multithreaded Processes
(not required in the exam)

3.23

Multi-threaded Process Analogy

3.24

3.10 Multithreaded Server
Architecture Example

3.25

3.11 Multithreading Benefits
 Responsiveness – may allow continued execution if

part of process is blocked, especially important for user
interfaces

 Resource Sharing – threads share resources of
process, easier than shared memory or message
passing

 Economy – cheaper than process creation, thread
switching lower overhead than context switching

 Scalability – process can take advantage of
multiprocessor architectures

3.26

3.12 Multi-Processor Systems

 The systems can have single
processor or multiple
processors

 A system can have
independent CPUs in single
motherboard

 A multi-core processor is one
which combines two or more
independent processors into
a single chip.

3.27

3.13 Concurrency vs. Parallelism

 Concurrency supports more than one task making
progress, this can be implemented by a Single
processor / core with a scheduler.

 Parallelism implies a system can perform more than
one task simultaneously on multi-core system

3.28

3.14 Amdahl’s Law

 This law Identifies performance gains from adding
additional cores to an application that has both serial
and parallel components

 P is parallel portion

 S is serial portion

S = 1 - P

 N processing cores

 As N approaches infinity, speedup approaches 1 / S

 Serial portion of an application is limiting the
performance gained by adding additional cores

 Adding more processors leads to successively smaller
returns in terms of speedup

3.29

Amdahl’s Law Graph
(not required in the exam)

3.30

Amdahl’s Law Example

