
6.1

Tishk International University
Science Faculty
IT Department

Operating Systems

3rd Grade - Fall Semester

Lecture 3: CPU Scheduling

Instructor: Alaa Ghazi

Lecture 3: CPU Scheduling
3.1 Basic Concepts

3.2 Scheduling Criteria

3.3 CPU Scheduling Algorithms
1. First-Come First-Serve Scheduling, FCFS
2. Shortest-Job-First Scheduling, SJF
3. Priority Scheduling
4. Round Robin Scheduling
5. Multilevel Queue Scheduling
6. Multilevel Feedback-Queue Scheduling

3.4 Multiple-Processor Scheduling

6.3

3.1 Basic Concepts
 CPU scheduling allows one process to use the CPU while

the execution of other processes are on hold.

 Each process will pass into cycles of CPU execution and
I/O wait, CPU burst followed by I/O burst and so on.

 CPU burst time is of main concern to the CPU scheduling.

 The important role of an OS is the act of managing and
scheduling these activities to maximize the use of the
resources and minimize wait and idle time.

 CPU scheduling decisions may take place when a process:

1. Switches from running to waiting state

2. Switches from running to ready state

3. Switches from waiting to ready

4. Terminates

6.4

3.2 Scheduling Criteria

 CPU utilization – keep the CPU as busy as possible

 Throughput – The number of processes that complete
their execution per time unit

 Turnaround time – amount of time to execute a
particular process

 Waiting time – amount of time a process has been
waiting in the ready queue

 Response time – amount of time it takes from when a
request was submitted until the first response is
produced, not output (for time-sharing environment)

6.5

Scheduling Criteria – in Time Axis

6.6

Scheduling Algorithm Optimization Criteria

Max CPU utilization

Max throughput

Min turnaround time

Min waiting time

Min response time

6.7

3.3 CPU Scheduling Algorithms
CPU scheduling deals with the problem of deciding which
of the processes in the ready queue is to be allocated the
CPU. Algorithms user are:

1. First-Come First-Serve Scheduling, FCFS

2. Shortest-Job-First Scheduling, SJF

3. Priority Scheduling

4. Round Robin Scheduling

5. Multilevel Queue Scheduling

6. Multilevel Feedback-Queue Scheduling

6.8

First- Come, First-Served (FCFS) Scheduling
 FCFS is very simple - like customers waiting in line at the

bank or the post office.

 However, FCFS can yield some very long average wait
times, particularly if the first process to get there takes a
long time. For example, consider the following Example

6.9

Example of FCFS

Process Burst Time

P1 24

P2 3

P3 3

 Suppose that the processes arrive in the order: P1 , P2 , P3
The Gantt Chart for the schedule is:

Waiting time for P1 = 0; P2 = 24; P3 = 27

 Average waiting time: (0 + 24 + 27)/3 = 17

P P P1 2 3

0 24 3027

6.10

Shortest-Job-First (SJF) Scheduling
 The idea behind the SJF algorithm is to pick the fastest

little job that needs to be done, get it out of the way first,
and then pick the next smallest fastest job to do next.

 Technically this algorithm picks a process based on the
next shortest CPU burst, not the overall process time.

 SJF is optimal – gives minimum average waiting time for a
given set of processes

 The difficulty is knowing the length of the next CPU
request

6.11

Example of SJF

ProcessArrTime Burst Time

P1 0.0 6

P2 2.0 8

P3 4.0 7

P4 5.0 3

 SJF scheduling chart

 Average waiting time = (0 + 3 + 9 + 16) / 4 = 7

P3

0 3 24

P4 P1

169

P2

6.12

Priority Scheduling
 A priority number (integer) is associated with each process

 The CPU is allocated to the process with the highest priority
(smallest integer  highest priority)

 Priorities can be assigned either internally or externally.
Internal priorities are assigned by the OS using criteria such
as average burst time, ratio of CPU to I/O activity, system
resource use, and other factors available to the kernel.
External priorities are assigned by users, based on the
importance of the job.

 Priority scheduling can suffer from a major problem known
as indefinite blocking, or starvation, in which a low-priority
task can wait forever because there are always some other
jobs around that have higher priority.

 Solution  Aging – as time progresses increase the priority of
the process

6.13

Example of Priority Scheduling

ProcessAarri Burst TimeTPriority

P1 10 3

P2 1 1

P3 2 4

P4 1 5

P5 5 2

 Priority scheduling Gantt Chart

 Average waiting time = (0 + 1 + 6+ 16+ 18) /5 = 8.2 m sec

6.14

Round Robin (RR)

 Round robin scheduling is similar to FCFS scheduling,
except that CPU bursts are assigned with limits called time
quantum.

 When a process is given the CPU, a timer is set for a time
quantum.

 If the process finishes its burst before the time quantum
timer expires, then it is swapped out of the CPU just like
the normal FCFS algorithm.

 If the timer goes off first, then the process is swapped
out of the CPU and moved to the back end of the ready
queue.

6.15

Round Robin (RR)
 The ready queue is maintained as a circular queue, so

when all processes have had a turn, then the scheduler
gives the first process another turn, and so on.

 RR scheduling can give the effect of all processes sharing
the CPU equally.

6.16

Advantages and Drawbacks of
Round Robin (RR)

 The advantages of the round robin scheduling algorithm
are:

 The algorithm is fair because each process gets a fair
chance to run on the CPU.

 Better response than SJF

 The drawbacks of the round robin scheduling algorithm are
as follows;

 there is an increase number of context switching that
occurs with considerable over heads.

 Typically, higher average turnaround than SJF.

6.17

Example of RR with Time Quantum = 3
(not required in the exam)

6.18

RR Time Quantum Value

A short quantum:
Good: because processes need not wait long before
they are scheduled in.
Bad: because context switch overhead increase

A long quantum:
Bad: because processes no longer appear to
execute concurrently and that may degrade
the system performance (same like FCFS)

Time Quantum q should be large compared to context
switch time but not larger than average process time

q should be usually 10ms to 100ms, when
context switch < 10 micro s

6.19

Time Quantum and Context Switch Time
Comparison Diagram

(not required in the exam)

6.20

Multilevel Queue

 When processes can be readily categorized, then multiple
separate queues can be established, each implementing
whatever scheduling algorithm is most appropriate for that
type of job, and/or with different parametric adjustments.

 Note that under this algorithm jobs cannot switch from
queue to queue - Once they are assigned a queue, that is
their queue until they finish.

 Each queue has its own scheduling algorithm for example:

 foreground – RR

 background – FCFS

6.21

Multilevel Queue

 Scheduling must be done between the queues:

 Fixed priority scheduling; (i.e., serve all from foreground
then from background). Possibility of starvation.

 Time slice – each queue gets a certain amount of CPU
time which it can schedule amongst its processes; i.e.,

80% to foreground in RR

20% to background in FCFS

6.22

Multilevel Queue Scheduling

6.23

Multilevel Feedback Queue

 Multilevel feedback queue scheduling is similar to the
ordinary multilevel queue scheduling described above,
but the difference is jobs may be moved from one
queue to another for a variety of reasons:

 If the characteristics of a job change between CPU-
intensive and I/O intensive, then it switches a job from
one queue to another.

 Aging: a job that has waited for a long time can get
bumped up into a higher priority queue.

6.24

Multilevel Feedback Queue

 Multilevel feedback queue scheduling is the most flexible,
because it can be tuned for any situation. But it is also
the most complex to implement because of all the
adjustable parameters. Some of the parameters which
define one of these systems include:

 The number of queues.

 The scheduling algorithm for each queue.

 The methods used to transfer processes from one
queue to another.

 The method used to determine which queue a process
enters initially.

6.25

Example of Multilevel Feedback Queue
(not required in the exam)

6.26

3.4 Multiple-Processor Scheduling

 When multiple processors are available, then the
scheduling gets more complicated, because now there is
more than one CPU which must be kept busy and in
effective use at all times.

 Load sharing revolves around balancing the load
between multiple processors.

 Multi-processor systems may be heterogeneous, (
different kinds of CPUs), or homogenous, (all the same
kind of CPU).

6.27

Approaches to Multiple-CPU Scheduling

 Asymmetric multiprocessing – here a single scheduler
is running only on one CPU accesses the system data
structures, and decides for every CPU.

 Symmetric multiprocessing (SMP) – the most common
approach, when each CPU is self-scheduling, with two
versions:
 Global Queue: all processes in common ready queue, or

 Per CPU Queues: each has its own private queue of ready
processes

6.28

6.29

6.30

6.31

Symmetrical Scheduling
(with per CPU queues)

CPU
0

CPU
1

CPU
2

CPU
3

 Static partition of processes across CPUs

6.32

Processor Affinity

 Processor affinity – the binding of a process or a thread
to a CPU, so that the process or thread will execute only
on the designated CPU. There are two types:

 soft affinity: when the system attempts to keep
processes on the same processor but makes no
guarantees

 hard affinity: in which a process specifies that it is not
to be moved between processors.

6.33

Multiple-Processor Scheduling
– Load Balancing

 Load balancing attempts to keep workload evenly
distributed, so that one CPU won't be sitting idle while
another is overloaded. This is done using Process
Migration.

 Load Balancing Techniques:

 Push Migration A special task periodically monitors
load of all processors, and redistributes work when it
finds an imbalance.

 Pull Migration Idle processors pull a waiting task from
a busy processor

