

Association between categorical variables (proportions) Chi square (χ²) test

Professor Dr Abubakir M. Saleh

Biostatistics NUR304

Fall semester

8th week

7/11/2023

Outline

1) Construct 2-way table to examine association between two categorical variables.

 Conduct Chi Square (χ2) test to assess evidence for association between two or more categorical variables.

Objectives

At the end of this lecture, students should be able to :

- Know how to use chi-square test for categorical variables.
- Obtain P-value and interpret it.

Constructing a two-way table

- Shows distribution of (relationship between) 2 categorical variables.
- Example: Relationship between physical exercise and the sex of individuals?
- If rows are independent variable, use row %'s.
- 2x2 table

Sex	Exercise		No exercise		Total	
	No.	%	No.	%	No.	%
Male	31	75.6	10	24.4	41	100
Female	101	83.5	20	16.5	121	100
Total	132	81.5	30	18.5	162	100

Another example

- Drug A: out of 93 patients, 49 had response
- Drug B: Out of 91 patients, 18 had response
- Construct a two-way table
- 2x2 table

Drug	Tumor re	Total	
	Yes	No	
Drug A	49 (53%)	44 (47%)	93 (100%)
Drug B	18 (20%)	73 (80%)	91 (100%)
Total	67 (36%)	117 (64%)	184 (100%)

Larger tables

• 3x3 table

Age	F	Fever after operation					Total	
group	Mi	ld	Mode	Moderate Severe				
	No.	%	No.	%	No.	%	No.	%
<30 Y	37	59	14	22	12	19	63	100
30-45 Y	18	33	17	31	19	35	54	100
>45 Y	24	50	14	29	10	21	48	100
Total	79		45		41		165	

Association between two variables

- What do we mean by association between two variables?
- Two variables are associated if distribution of one varies according to value of other
- Knowing value of one variable tells us something about value of other
- In example,

Knowing sex of student will tell us something about physical exercise (association).

- Usually examine distribution of dependent variable according to levels of independent variable
- Distribution of physical exercise (dependent) across sex (independent)

Sex	Exercise		No exercise		Total	
	No.	%	No.	%	No.	%
Male	31	75.6	10	24.4	41	100
Female	101	83.5	20	16.5	121	100
Total	132	81.5	30	18.5	162	100

• Distribution of physical exercise differs according to sex but.....by more than we expect by chance??....

Example: Gender and Exercise among students

Sex	Exer	Exercise		ercise	Total	
	No.	%	No.	%	No.	%
Male	31	75.6	10	24.4	41	100
Female	101	83.5	20	16.5	121	100
Total	132	81.5	30	18.5	162	100

75.6% of male students exercise regularly83.5% of female students exercise regularly

Is there a real difference or it is due to chance?

Significance test for association

- Examining percentages indicates whether association may exist between exposure and disease
- But is association likely to be real or due to sampling variability?
- Need a

Significance test for association

- Examining percentages indicates whether association may exist between exposure and disease
- But is association likely to be real or due to sampling variability?
- Need a significance test.
- Null hypothesis (H₀): "no association between the two variables"
- H₀: distribution of physical exercise is same in each group (male and female).

Significance test for comparing proportions

- The test is called Chi Square (χ2) test
- Step 1 Calculate expected table
 For H₀, as there is not real association
- **Step 2 Calculate** χ2
- Step 3 Obtain p-value and interpret it

Note: Steps 1 & 2 can be done in one quick step only for 2x2 tables

Step 1-Calculate expected table

• Only numbers, without percentages

Sex	Exercise	No exercise	Total
Male	33.4	7.6	41
Female	98.6	22.4	121
Total	132	30	162

Expected number = <u>Row total x Column total</u>

Overall total

Observed

41x132/162=33.4

Sex	Exercise	No exercise	Total
Male	31	10	41
Female	101	20	121
Total	132	30	162

Sex	Exercise	No exercise	Total
Male	33.4		41
Female			121
Total	132	30	162

Quick way

Expected number = <u>Row total x Column total</u>

Overall total

Observed

Sex	Exercise	No exercise	Total
Male	31	10	41
Female	101	20	121
Total	132	30	162

41x132/162=33.4 41x30/162=7.6

Expected

Sex	Exercise	No exercise	Total
Male	33.4	7.6	41
Female			121
Total	132	30	162

Quick way

Expected number = <u>Row total x Column total</u>

Overall total

Observed

Sex	Exercise	No exercise	Total	41x132/162=33.4
Male	31	10	41	41x30/162=7.6
Female	101	20	121	121x132/162=98.6
Total	132	30	162	

Expected

Sex	Exercise	No exercise	Total
Male	33.4	7.6	41
Female	98.6		121
Total	132	30	162

Quick way

Expected number = <u>Row total x Column total</u>

Overall total

Observed

Sex	Exercise	No exercise	Total	41x132/162=33.4
Male	31	10	41	41x30/162=7.6
Female	101	20	121	121x132/162=98.6
Total	132	30	162	121x30/162=22.4

Expected

Sex	Exercise	No exercise	Total
Male	33.4	7.6	41
Female	98.6	22.4	121
Total	132	30	162

Step 2 – calculate $\chi 2$

Compare each <u>observed</u> value with each <u>expected</u> value

Sex	Exercise	No exercise	Total
Male	31	10	41
Female	101	20	121
Total	132	30	162
Sex	Exercise	No exercise	Total
Male	33.4	7.6	41
Female	98.6	22.4	121
Tatal	132	20	162
	Male Female Total Sex Male	Male31Female101Total132SexExerciseMale33.4Female98.6	Male3110Female10120Total13230SexExerciseMale33.47.6Female98.622.4

and obtain $\chi 2$ test statistic. $\chi 2 = \Sigma \{(O-E)^2/E\}$

- Compare each observed value with each expected value and obtain χ^2 test statistic.
- $\chi 2 = \Sigma \{ (O-E)^2/E \}$
- Calculate (O-E)2/E for each cell and sum over all cells
- $\chi 2 = (31 33.4)^2 / 33.4 + (10 7.6)^2 / 7.6 + (101 98.6)^2 / 98.6 + (20 22.4)^2 / 22.4 = 1.25$
- If $\chi 2$ value is large then (O-E) is, in general, large and data do not support H₀, i.e. real association
- If $\chi 2$ value is small then (O-E) is, in general, small and data do support H₀, i.e. no association

Step 3 - Obtain p-value

- Refer $\chi 2$ value to tables of chi-squared distribution
- Need "degrees of freedom", v, to take into account number of "cells" in table
- *v* = (*r* 1) *x* (*c* 1) *r* = *no.* of rows, *c* = *no.* of columns.
- In example, r = c = 2, so $v = (2-1) \times (2-1) = 1$
- Refer to table, χ2 = 1.25, d.f. =1

				<i>P</i> val	ue			
d.f.	0.5	0.25	0.1	0.05	0.025	0.01	0.005	0.001
1	0.45	1.32	2.71	3 84	5.02	6.63	7.88	10.83
2	1.39	2.77	4.61	5.99	7.38	9.21	10.60	13.82
3	2.37	4.11	6.25	7.81	9.35	11.34	12.84	16.27
4	3.36	5.39	7.78	9.49	11.14	13.28	14.86	18.47
5	4.35	6.63	9.24	11.07	12.83	15.09	16.75	20.52
6	5.35	7.84	10.64	12.59	14.45	16.81	18.55	22.46
7	6.35	9.04	12.02	14.07	16.01	18.48	20.28	24.32
8	7.34	10.22	13.36	15.51	17.53	20.09	21.96	26.13
9	8.34	11.39	14.68	16.92	19.02	21.67	23.59	27.88
10	9.34	12.55	15.99	18.31	20.48	23.21	25.19	29.59
11	10.34	13.70	17.28	19.68	21.92	24.73	26.76	31.26
12	11.34	14.85	18.55	21.03	23.34	26.22	28.30	32.91
13	12.34	15.98	19.81	22.36	24.74	27.69	29.82	34.53
14	13.34	17.12	21.06	23.68	26.12	29.14	31.32	36.12
15	14.34	18.25	22.31	25.00	27.49	30.58	32.80	37.70
16	15.34	19.37	23.54	26.30	28.85	32.00	34.27	39.25
17	16.34	20.49	24.77	27.59	30.19	33.41	35.72	40.79
18	17.34	21.60	25.99	28.87	31.53	34.81	37.16	42.31
19	18.34	22.72	27.20	30.14	32.85	36.19	38.58	43.82
20	19.34	23.83	28.41	31.41	34.17	37.57	40.00	45.32

Percentage points of the χ^2 distribution.

- In example, r = c = 2, so v = (2-1) x (2-1) =
- From table, χ2 value of 3.84, P > 0.05

Step 4 - Interpret p-value

• No evidence of association

Quick method for $\chi 2$

- There is a quick formula to test for association in 2x2 table
- If we label cells of 2x2 table as follows:
 a b |e

cd f	Sex	Exercise	No exercise	Total
	Male	31 (a)	10 (b)	41(e)
gh N	Female	101 (c)	20 (d)	121 (f)
	Total	132 (g)	30 (h)	162 (N)

 Then easiest way to calculate χ2 is using: χ2 = (|ad - bc|)² x N = (31x20-101x10)²x162 <u>efgh</u>
 <u>41x121x132x30</u>

= 1.25

Another example – Tumor response

Observed

Drug	Tumor res	Total	
	Yes	No	
Drug A	49 (53%)	44	93
Drug B	18 (20%)	73	91
Total	67 (36%)	117	184

Expected

Drug	Tumor res	Total	
	Yes	No	
Drug A	33.86	59.4	93
Drug B	33.14	57.86	91
Total	67 (36%)	117	184

 $\chi^2 = (49 - 33.86)^2/33.86 + (18 - 33.14)^2/33.14 + (44 - 59.14)^2/59.14 + (73 - 57.86)^2/57.86 = 21.52.$

				<i>P</i> val	ue			
d.f.	0.5	0.25	0.1	0.05	0.025	0.01	0.005	0.001
1	0.45	1.32	2.71	3 84	5.02	6.63	7.88	10.83
2	1.39	2.77	4.61	5.99	7.38	9.21	10.60	13.82
3	2.37	4.11	6.25	7.81	9.35	11.34	12.84	16.27
4	3.36	5.39	7.78	9.49	11.14	13.28	14.86	18.47
5	4.35	6.63	9.24	11.07	12.83	15.09	16.75	20.52
6	5.35	7.84	10.64	12.59	14.45	16.81	18.55	22.46
7	6.35	9.04	12.02	14.07	16.01	18.48	20.28	24.32
8	7.34	10.22	13.36	15.51	17.53	20.09	21.96	26.13
9	8.34	11.39	14.68	16.92	19.02	21.67	23.59	27.88
10	9.34	12.55	15.99	18.31	20.48	23.21	25.19	29.59
11	10.34	13.70	17.28	19.68	21.92	24.73	26.76	31.26
12	11.34	14.85	18.55	21.03	23.34	26.22	28.30	32.91
13	12.34	15.98	19.81	22.36	24.74	27.69	29.82	34.53
14	13.34	17.12	21.06	23.68	26.12	29.14	31.32	36.12
15	14.34	18.25	22.31	25.00	27.49	30.58	32.80	37.70
16	15.34	19.37	23.54	26.30	28.85	32.00	34.27	39.25
17	16.34	20.49	24.77	27.59	30.19	33.41	35.72	40.79
18	17.34	21.60	25.99	28.87	31.53	34.81	37.16	42.31
19	18.34	22.72	27.20	30.14	32.85	36.19	38.58	43.82
20	19.34	23.83	28.41	31.41	34.17	37.57	40.00	45.32

Percentage points of the χ^2 distribution.

- χ2 of 21.52
- r = c = 2, so (2-1) x (2-1) = 1 d.f. and p<0.001

Quick formula

Drug	Tumor res	Total	
	Yes	No	
Drug A	49 (53%)	44	93
Drug B	18 (20%)	73	91
Total	67 (36%)	117	184

χ2 = (|ad - bc|)² x N efgh

 $= \frac{(49x73-44x18)^2x184}{93x91x67x117}$

= 21.51

Summary

What to do when confronted with categorical data?

• 6 Step Guide....

Step 1: Construct 2-way table to display data

Step 2: Calculate row (independent) %'s

Step 3: Carry out (O-E) χ2 test of association (or quick formula for 2x2 tables only)

Step 4: Calculate degrees of freedom for $\chi 2$ test

Step 5: Refer to tables to obtain P-value

Step 6: Interpret p-value

References

 <u>Essential Medical Statistics</u>, by Betty Kirkwood & Jonathan Sterne (Published by Blackwell)
 <u>Statistics Without Tears</u>, a Primer for Non-mathematicians, by Derek Rowntree (Published by Penguin)

Questions?