Association between categorical variables (proportions)
 Chi square (χ^{2}) test

Professor Dr Abubakir M. Saleh

Biostatistics NUR304
Fall semester
8th week
7/11/2023

Outline

1) Construct 2-way table to examine association between two categorical variables.
2) Conduct Chi Square (x 2) test to assess evidence for association between two or more categorical variables.

Objectives

At the end of this lecture, students should be able to :

- Know how to use chi-square test for categorical variables.
- Obtain P-value and interpret it.

Constructing a two-way table

- Shows distribution of (relationship between) 2 categorical variables.
- Example: Relationship between physical exercise and the sex of individuals?
- If rows are independent variable, use row \%'s.
- 2×2 table

Sex	Exercise		No exercise		Total	
	No.	$\%$	No.	\%	No.	$\%$
Male	31	$\mathbf{7 5 . 6}$	10	$\mathbf{2 4 . 4}$	41	100
Female	101	$\mathbf{8 3 . 5}$	20	$\mathbf{1 6 . 5}$	121	100
Total	132	$\mathbf{8 1 . 5}$	30	$\mathbf{1 8 . 5}$	162	100

Another example

- Drug A: out of 93 patients, 49 had response
- Drug B: Out of 91 patients, 18 had response
- Construct a two-way table
- 2x2 table

Drug	Tumor response		Total
	Yes	No	
Drug A	$49(\mathbf{5 3 \%})$	$44(47 \%)$	$93(100 \%)$
Drug B	$18(\mathbf{2 0 \%})$	$73(80 \%)$	$91(100 \%)$
Total	$67(36 \%)$	$117(64 \%)$	$184(100 \%)$

Larger tables

- 3×3 table

Age group	Fever after operation						Total	
	Mild		Moderate Severe					
	No.	\%	No.	\%	No.	\%	No.	\%
<30 Y	37	59	14	22	12	19	63	100
30-45 Y	18	33	17	31	19	35	54	100
$>45 \mathrm{Y}$	24	50	14	29	10	21	48	100
Total	79		45		41		165	

Association between two

variables

- What do we mean by association between two variables?
- Two variables are associated if distribution of one varies according to value of other
- Knowing value of one variable tells us something about value of other
- In example,

Knowing sex of student will tell us something about physical exercise (association).

- Usually examine distribution of dependent variable according to levels of independent variable
- Distribution of physical exercise (dependent) across sex (independent)

Sex	Exercise		No exercise		Total	
	No.	\%	No.	\%	No.	\%
Male	31	75.6	10	24.4	41	100
Female	101	83.5	20	16.5	121	100
Total	132	81.5	30	18.5	162	100
- Distrib but.....	$\begin{aligned} & \text { ion } \\ & \text { mo } \end{aligned}$	ysic an w	xerci	iffer ch	cord	

Example: Gender and Exercise among students

Sex	Exercise		No exercise		Total	
	No.	$\%$	No.	$\%$	No.	$\%$
Male	31	75.6	10	24.4	41	100
Female	101	83.5	20	16.5	121	100
Total	132	81.5	30	18.5	162	100

75.6\% of male students exercise regularly 83.5\% of female students exercise regularly

Is there a real difference or it is due to chance?

Significance test for association

- Examining percentages indicates whether association may exist between exposure and disease
- But is association likely to be real or due to sampling variability?
- Need a

Significance test for association

- Examining percentages indicates whether association may exist between exposure and disease
- But is association likely to be real or due to sampling variability?
- Need a significance test.
- Null hypothesis $\left(\mathrm{H}_{0}\right)$: "no association between the two variables"
- H_{0} : distribution of physical exercise is same in each group (male and female).

Significance test for comparing proportions

- The test is called Chi Square ($\mathrm{\chi} 2$) test
- Step 1 - Calculate expected table

For H_{0}, as there is not real association

- Step 2 - Calculate $\chi 2$
- Step 3 - Obtain p-value and interpret it

Note: Steps 1 \& 2 can be done in one quick step only for 2x2 tables

Step 1-Calculate expected table

- Only numbers, without percentages

Sex	Exercise	No exercise	Total
Male	33.4	7.6	41
Female	98.6	22.4	121
Total	132	30	162

Expected number $=\underline{\text { Row total } \times \text { Column total }}$ Overall total

Observed

$$
41 \times 132 / 162=33.4
$$

Sex	Exercise	No exercise	Total
Male	31	10	41
Female	101	20	121
Total	132	30	162

Sex	Exercise	No exercise	Total
Male	33.4		41
Female			121
Total	132	30	162

Quick way

Expected number = Row total x Column total

Overall total
Observed

Sex	Exercise	No exercise	Total	41×132/162=33.4
Male	31	$\mathbf{1 0}$	$\mathbf{4 1}$	$\mathbf{4 1 \times 3 0 / 1 6 2 = 7 . 6}$
Female	101	20	121	
Total	132	$\mathbf{3 0}$	$\mathbf{1 6 2}$	

Expected

Sex	Exercise	No exercise	Total
Male	33.4	$\mathbf{7 . 6}$	41
Female			121
Total	132	30	162

Quick way

Expected number = Row total x Column total

Overall total
Observed

Sex	Exercise	No exercise	Total	$41 \times 132 / 162=33.4$
Male	31	10	41	$41 \times 30 / 162=7.6$
Female	$\mathbf{1 0 1}$	20	$\mathbf{1 2 1}$	$\mathbf{1 2 1 \times 1 3 2 / 1 6 2 = 9 8 . 6}$
Total	$\mathbf{1 3 2}$	30	$\mathbf{1 6 2}$	

Expected

Sex	Exercise	No exercise	Total
Male	33.4	7.6	41
Female	98.6		121
Total	132	30	162

Quick way

Expected number = Row total x Column total

Overall total

Observed

Sex	Exercise	No exercise	Total	$\mathbf{4 1 \times 1 3 2 / 1 6 2 = 3 3 . 4}$
Male	31	10	41	$\mathbf{4 1 \times 3 0 / 1 6 2 = 7 . 6}$
Female	101	20	$\mathbf{1 2 1}$	$\mathbf{1 2 1 \times 1 3 2 / 1 6 2 = 9 8 . 6}$
Total	132	$\mathbf{3 0}$	$\mathbf{1 6 2}$	$\mathbf{1 2 1 \times 3 0} / \mathbf{1 6 2}=\mathbf{= 2 2 . 4}$

Expected

Sex	Exercise	No exercise	Total
Male	33.4	7.6	41
Female	98.6	$\mathbf{2 2 . 4}$	121
Total	132	30	162

Step 2 - calculate χ^{2}
Compare each observed value with each expected value

Observed

Expected

Sex	Exercise	No exercise	Total
Male	31	10	41
Female	101	20	121
Total	132	30	162

and obtain $\chi 2$ test statistic. $\quad \chi 2=\Sigma\left\{(O-E)^{2} / E\right\}$

- Compare each observed value with each expected value and obtain $\chi 2$ test statistic.
- $\quad \chi 2=\Sigma\left\{(\mathrm{O}-\mathrm{E})^{2} / \mathrm{E}\right\}$
- Calculate (O-E)2/E for each cell and sum over all cells
- $\quad \chi 2=(31-33.4)^{2} / 33.4+(10-7.6)^{2} / 7.6+(101-98.6)^{2} / 98.6+(20-22.4)^{2} / 22.4=\mathbf{1 . 2 5}$
- If $\chi 2$ value is large then ($\mathrm{O}-\mathrm{E}$) is, in general, large and data do not support H_{0}, i.e. real association
- If $\chi 2$ value is small then ($\mathrm{O}-\mathrm{E}$) is, in general, small and data do support H_{0}, i.e. no association

Step 3 - Obtain p-value

- Refer $\chi 2$ value to tables of chi-squared distribution
- Need "degrees of freedom", v, to take into account number of "cells" in table
- $\quad v=(r-1) \times(c-1) r=n o$. of rows, $c=n o$. of columns.
- In example, $r=c=2$, so $v=(2-1) \times(2-1)=1$
- Refer to table, $\chi 2=1.25$, d.f. $=1$

Percentage points of the χ^{2} distribution.

	P value							
d.f.	0.5	0.25	0.1	$\underline{0} 0.05$	0.025	0.01	0.005	0.001
1	0.45	$\boxed{7} .32$	2.71	$\underline{3.84}$	5.02	6.63	7.88	10.83
2	1.39	2.77	4.61	5.99	7.38	9.21	10.60	13.82
3	2.37	4.11	6.25	7.81	9.35	11.34	12.84	16.27
4	3.36	5.39	7.78	9.49	11.14	13.28	14.86	18.47
5	4.35	6.63	9.24	11.07	12.83	15.09	16.75	20.52
6	5.35	7.84	10.64	12.59	14.45	16.81	18.55	22.46
7	6.35	9.04	12.02	14.07	16.01	18.48	20.28	24.32
8	7.34	10.22	13.36	15.51	17.53	20.09	21.96	26.13
9	8.34	11.39	14.68	16.92	19.02	21.67	23.59	27.88
10	9.34	12.55	15.99	18.31	20.48	23.21	25.19	29.59
11	10.34	13.70	17.28	19.68	21.92	24.73	26.76	31.26
12	11.34	14.85	18.55	21.03	23.34	26.22	28.30	32.91
13	12.34	15.98	19.81	22.36	24.74	27.69	29.82	34.53
14	13.34	17.12	21.06	23.68	26.12	29.14	31.32	36.12
15	14.34	18.25	22.31	25.00	27.49	30.58	32.80	37.70
16	15.34	19.37	23.54	26.30	28.85	32.00	34.27	39.25
17	16.34	20.49	24.77	27.59	30.19	33.41	35.72	40.79
18	17.34	21.60	25.99	28.87	31.53	34.81	37.16	42.31
19	18.34	22.72	27.20	30.14	32.85	36.19	38.58	43.82
20	19.34	23.83	28.41	31.41	34.17	37.57	40.00	45.32

- In example, $r=c=2$, so $v=(2-1) \times(2-1)=$
- From table, $\chi 2$ value of $3.84, \mathrm{P}>0.05$

Step 4 - Interpret p-value

- No evidence of association

Quick method for $\chi 2$

- There is a quick formula to test for association in $\mathbf{2 \times 2}$ table
- If we label cells of 2×2 table as follows:
able
cd |f
gh | N

Sex	Exercise	No exercise	Total
Male	$31(\mathrm{a})$	$10(\mathrm{~b})$	$41(\mathrm{e})$
Female	$101(\mathrm{c})$	$20(\mathrm{~d})$	$121(\mathrm{f})$
Total	$132(\mathrm{~g})$	$30(\mathrm{~h})$	$162(\mathrm{~N})$

- Then easiest way to calculate $\chi 2$ is using:

$$
x^{2}=\underset{\text { efgh }}{(|a d-b c|)^{2} \times N}
$$

$$
\begin{aligned}
& =(31 \times 20-101 \times 10)^{2} \times 162 \\
& =1.25
\end{aligned}
$$

Another example - Tumor response

Observed			
Drug	Tumor response		Total
	Yes	No	
Drug A	49 (53\%)	44	93
Drug B	18 (20\%)	73	91
Total	67 (36\%)	117	184
Expected			
Drug	Tumor response		Total
	Yes	No	
Drug A	33.86	59.4	93
Drug B	33.14	57.86	91
Total	67 (36\%)	117	184
$\begin{aligned} x 2 & =(49-33.86)^{2} / 33.86+(18-33.14)^{2} / 33.14+(44-59.14)^{2} / 59.14+(73 \\ & -57.86)^{2} / 57.86=21.52 . \end{aligned}$			

Percentage points of the χ^{2} distribution.

	P value							
d.f.	0.5	0.25	0.1	0.05	0.025	0.01	0.005	0.001
1	0.45	1.32	2.71	3.84	5.02	6.63	7.88	10.83
2	1.39	2.77	4.61	5.99	7.38	9.21	10.60	13.82
3	2.37	4.11	6.25	7.81	9.35	11.34	12.84	16.27
4	3.36	5.39	7.78	9.49	11.14	13.28	14.86	18.47
5	4.35	6.63	9.24	11.07	12.83	15.09	16.75	20.52
6	5.35	7.84	10.64	12.59	14.45	16.81	18.55	22.46
7	6.35	9.04	12.02	14.07	16.01	18.48	20.28	24.32
8	7.34	10.22	13.36	15.51	17.53	20.09	21.96	26.13
9	8.34	11.39	14.68	16.92	19.02	21.67	23.59	27.88
10	9.34	12.55	15.99	18.31	20.48	23.21	25.19	29.59
11	10.34	13.70	17.28	19.68	21.92	24.73	26.76	31.26
12	11.34	14.85	18.55	21.03	23.34	26.22	28.30	32.91
13	12.34	15.98	19.81	22.36	24.74	27.69	29.82	34.53
14	13.34	17.12	21.06	23.68	26.12	29.14	31.32	36.12
15	14.34	18.25	22.31	25.00	27.49	30.58	32.80	37.70
16	15.34	19.37	23.54	26.30	28.85	32.00	34.27	39.25
17	16.34	20.49	24.77	27.59	30.19	33.41	35.72	40.79
18	17.34	21.60	25.99	28.87	31.53	34.81	37.16	42.31
19	18.34	22.72	27.20	30.14	32.85	36.19	38.58	43.82
20	19.34	23.83	28.41	31.41	34.17	37.57	40.00	45.32

- र2 of 21.52
- $r=c=2$, so (2-1) $x(2-1)=1$ d.f. and $p<0.001$
- Quick formula

Drug	Tumor response		Total
	Yes	No	
Drug A	$49(53 \%)$	44	93
Drug B	$18(20 \%)$	73	91
Total	$67(36 \%)$	117	184

$x^{2}=\frac{(|a d-b c|)^{2} \times N}{e f g h}$
$=\frac{(49 \times 73-44 \times 18)^{2} \times 184}{93 \times 91 \times 67 \times 117}$
$=21.51$

Summary

What to do when confronted with categorical data?

- 6 Step Guide....

Step 1: Construct 2-way table to display data

Step 2: Calculate row (independent) \%'s

Step 3: Carry out (O-E) $\chi 2$ test of association (or quick formula for 2×2 tables only)

Step 4: Calculate degrees of freedom for $\chi 2$ test

Step 5: Refer to tables to obtain P-value

Step 6: Interpret p-value

References

- Essential Medical Statistics, by Betty Kirkwood \& Jonathan Sterne
(Published by Blackwell)
Statistics Without Tears, a Primer for Non-mathematicians, by Derek Rowntree (Published by Penguin)

Questions?

