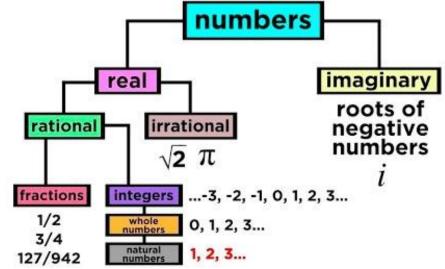


Lecture 1:

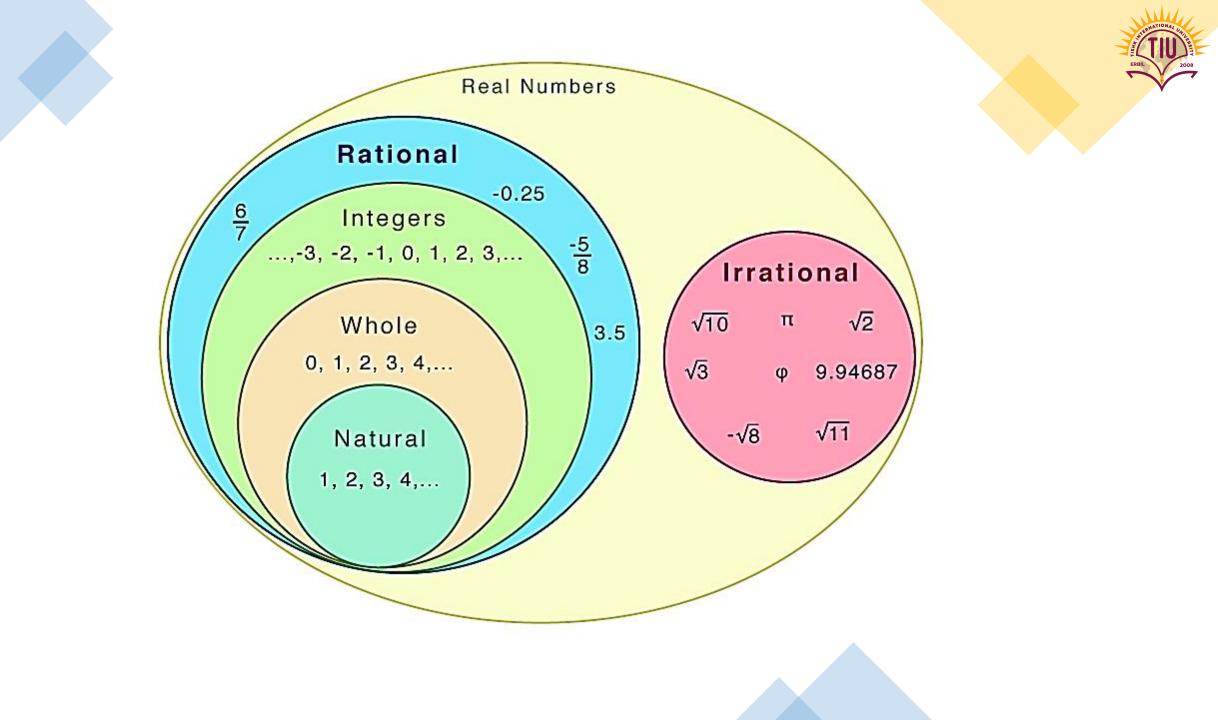
Numbers
 Logical Operators
 Significant Figures
 Scientific Notation
 Factorial

Ms. Togzhan Nurtayeva Course Code: IT 161/A Semester 1 Week 1-2 Date: 10.12.2023

Number Classifications

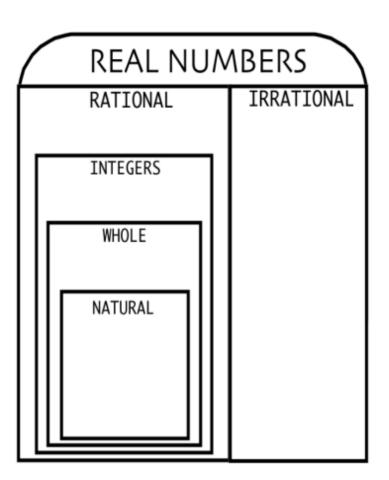

✓
$$Q = \left\{ \frac{1}{2}, \frac{3}{4}, 2, 5, 0, -\frac{7}{11}, -12, ... \right\}$$
 - rational numbers $\left\{ \frac{a}{b} \mid a, b \in Z, b \neq 0 \right\}$
✓ $Z = \{0, \pm 1, \pm 2, \pm 3, ...\}$ - integers
→ $Z^+ = \{0, 1, 2, 3, ...\}$ - non-negative integers

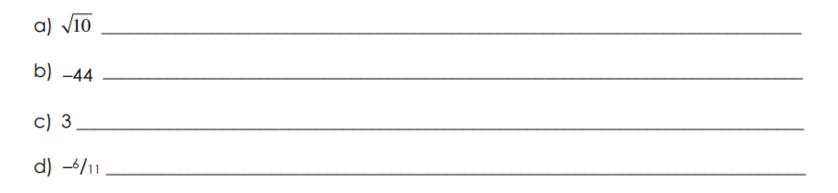
 $\rightarrow Z^- = \{0, -1, -2, -3, ...\} -$ non-positive integers


✓ $W = \{0, 1, 2, 3, ...\}$ – whole numbers

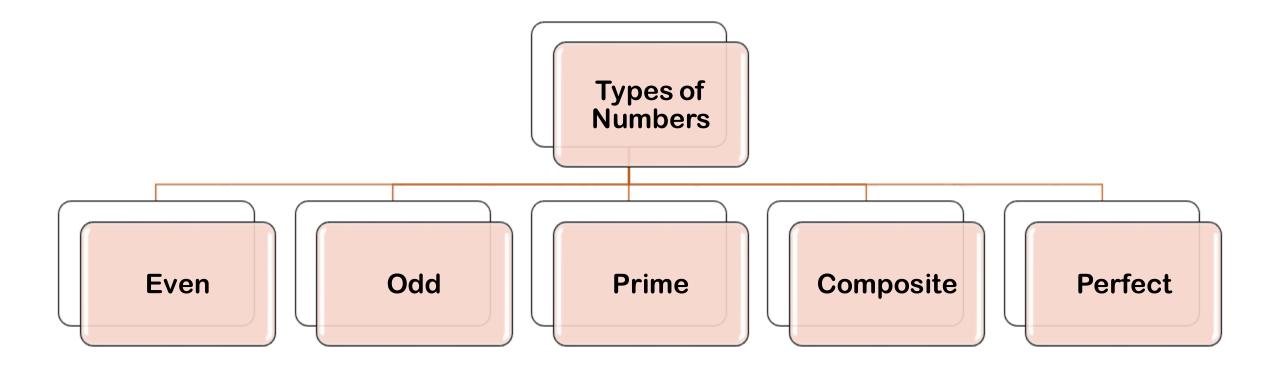
✓ $N = \{1, 2, 3, ...\}$ – natural numbers/counting numbers

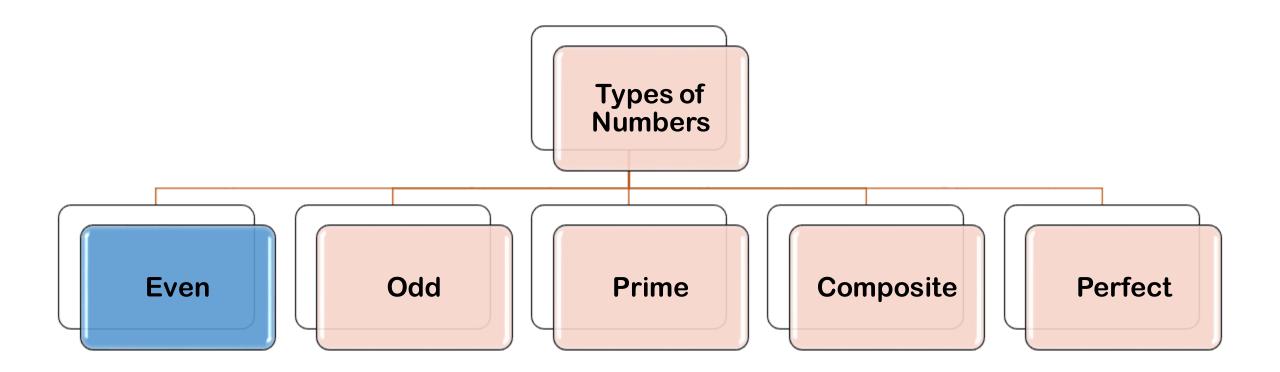
✓ $\sqrt{2}$, π , $\sqrt{3}$, ... - irrational numbers


Real numbers - <u>set of</u> irrational numbers & rational numbers



 Re-write each number in the Venn Diagram where it belongs. 				
-19	1.2	0	3	
$\sqrt{10}$	$\sqrt{81}$	3.456	-6/11	
-1.48298		п+3	-44	


2) List all classifications of the number.



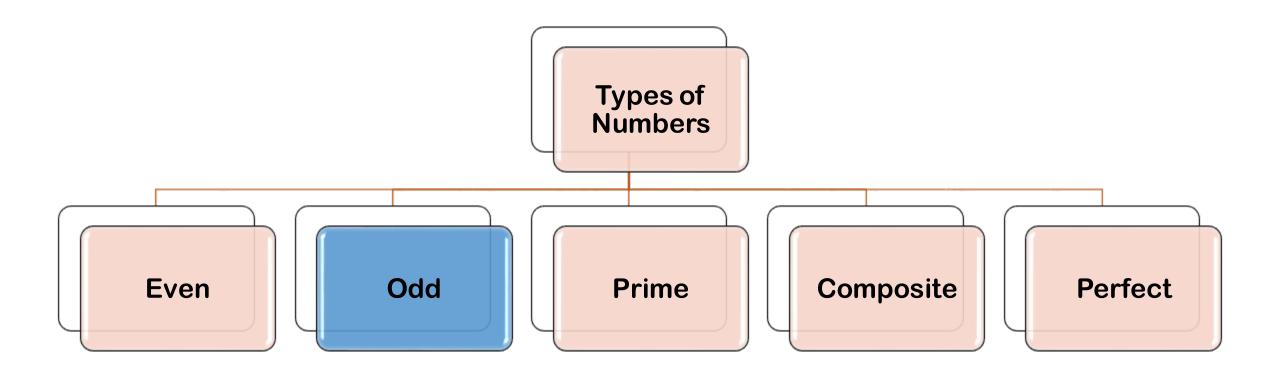
3) Check all boxes that apply to the number.

		Natural	Whole	Integer	Rational	Irrational	Real
a)	$\sqrt{81}$						
b)	$1.\bar{2}$						
C)	0						
d)	13						

> A number that can be exactly divided by 2.

- \succ Even numbers always end up with the last digit as 0, 2, 4, 6 or 8.
- > The general form of even numbers is given by 2k, where $k \in Z$

Ahmad has 30 pencils. He distributed 14 of those among his friends. Will he have an even number of pencils left? How do you know?


State true or false: 0 is an even number.

When you buy a dozen bananas, are you getting an even number or an odd number of bananas?

- Select the pair of <u>consecutive</u> even numbers from the following:
 - a) 24 and 28
 - b) 91 and 93
 - c) 84 and 86
 - d) 39 and 42

Select the even numbers from the following: a.) 778 b.) 912 c.) 223

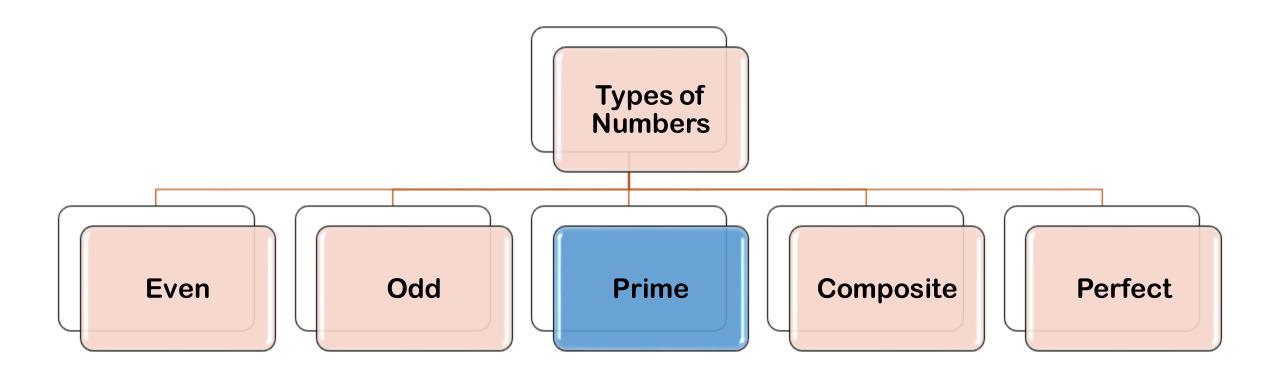
 \rightarrow

- > A number which is not divisible by 2.
- > An odd number always ends in 1, 3, 5, 7, or 9.
- > The general form of odd numbers is given by 2k + 1, where $k \in Z$

Determine whether 135 is an odd number or not.

 \rightarrow Is 350 an odd number or an even number?

 \rightarrow Will the sum of 23 + 35 result in an odd number?


Answer the following questions with reference to odd numbers:

a.) 1 is odd or even?

- b.) Which is the smallest 4 digit odd number?
- c.) What is the sum of any two odd numbers?
- d.) Is 2 an odd number?

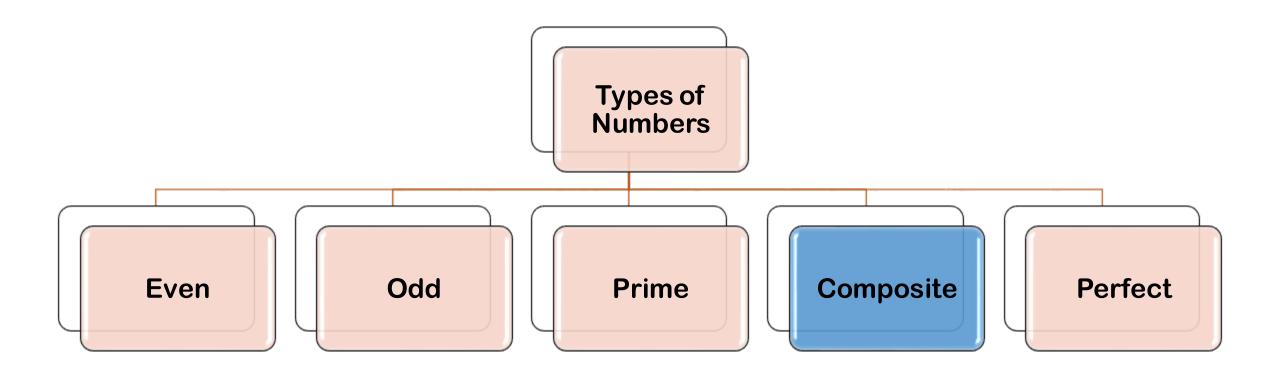
State true or false with respect to odd numbers. a.) The sum of two odd numbers is always an even number.

- b.) The smallest odd number is 5.
- c.) 9 is an odd number.

> A <u>natural number</u> that are divisible by only 1 and the number itself.

➤ Ex: 2, 3, 5, 7, 11, 13, …

Which of the two numbers is a prime number, 13 or 15?


Why is 20 not a prime number?

- Which of the following numbers is a prime number?
 - a) 4
 b) 10
 c) 33
 d) 43

- State true or false with respect to prime numbers.
 - a.) 1 is a prime number.
 - b.) The only even prime number is 2.
 - c.) The first five prime numbers are 2, 3, 5, 7, and 9.
 - d.) All prime numbers are odd.

Choose true/false against each statement.

	True	False
2 is the only even prime number.	0	0
3 is the smallest prime number.	0	0
97 is the largest prime number.	0	0
All prime numbers are odd.	0	0

> A natural number or a positive integer which has more than two factors.

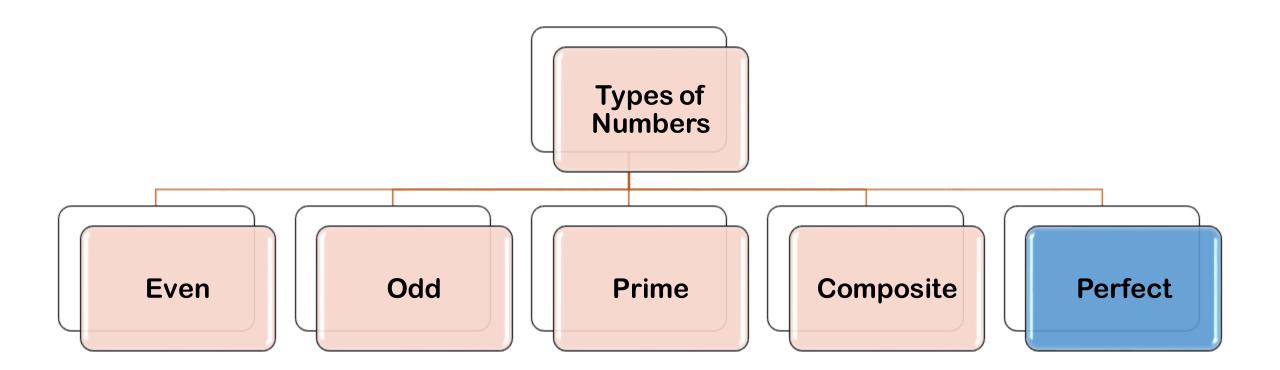
Ex: 15 has factors 1, 3, 5 and 15.

Always remember that **1** is neither prime nor composite

> Which of the following is a composite number?

a) 34

b) 31c) 39


 \rightarrow Fill in the blanks:

- a.) The smallest composite number is __.
- b.) The smallest odd composite number is ___.

- State true or false with respect to composite numbers.
 - a.) All even numbers are composite numbers.
 - b.) 1 is a composite number.

→ Aya is listing all the composite numbers between 3 and 10. Can you help her choose the correct option?

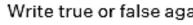
- a) 4, 6, 8, 9
 b) 4, 9
 c) 4, 5, 6, 7, 8, 9
 d) 4, 8, 9
- \rightarrow The smallest composite number is 2.
 - a) True b) False

- A positive integer that is equal to the sum of its positive factors, excluding the number itself.
- ➤ Ex: 6, 28, 496, 8128, 33550336, …

> All the perfect numbers are also <u>complete numbers</u>.

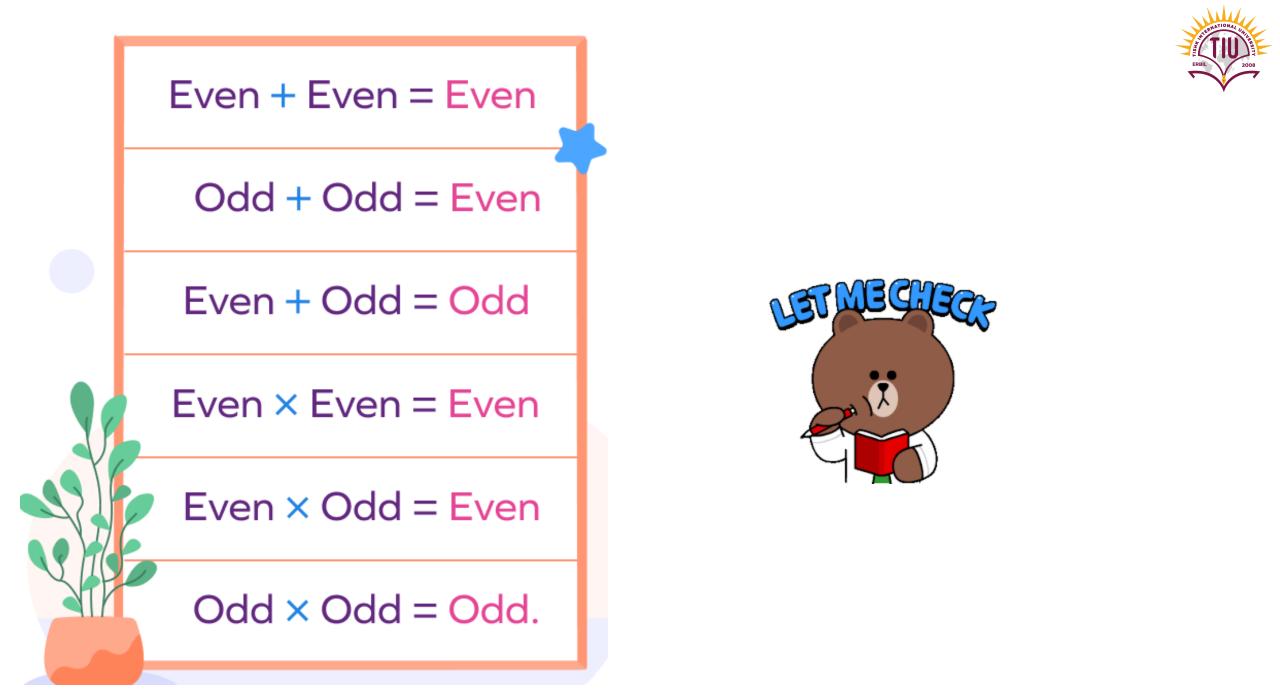
Is 28 a perfect number? \rightarrow

- Select the perfect numbers from the following.
 - a) 5
 - b) 6
 - c) 32
 - d) 28


 - e) 9

State true or false:

a.) Perfect numbers are the positive integers that are equal to the sum of its factors except for the number itself.


b.) All the perfect numbers are odd numbers.

 \rightarrow Check whether the given numbers are perfect numbers or not by finding the sum of their factors: a.) 8 b.) 25

Write true or false against each statement.

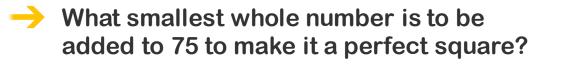
	True	False
All the perfect numbers known till now are even.	0	0
All perfect numbers can be written as the sum of its proper divisors.	0	0
The smallest perfect number is 9.	0	0

Perfect Square Numbers

Perfect squares are the squares of a whole number (when a number is multiplied by itself two times).

Perfect Square Formula

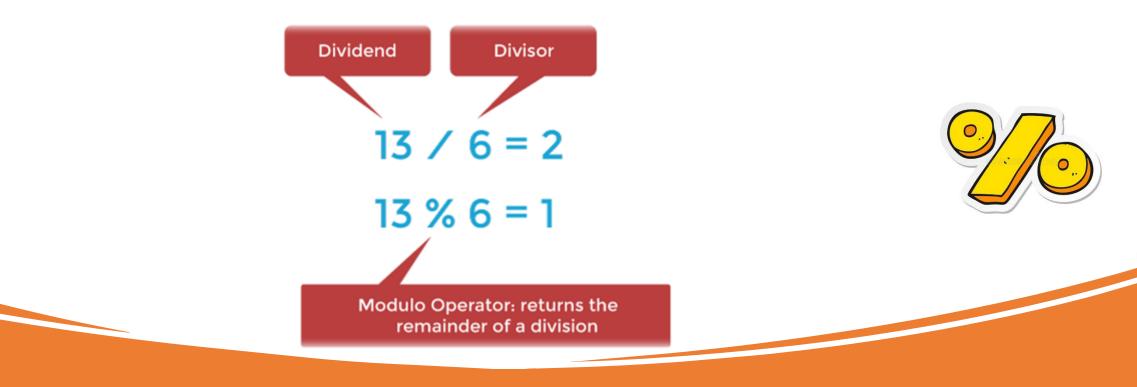
$$N = X^2$$


$1^2 = 1$	$11^2 = 121$	$21^2 = 441$
$2^2 = 4$	$12^2 = 144$	$22^2 = 484$
$3^2 = 9$	$13^2 = 169$	$23^2 = 529$
$4^2 = 16$	$14^2 = 196$	$24^2 = 576$
$5^2 = 25$	$15^2 = 225$	$25^2 = 625$
$6^2 = 36$	$16^2 = 256$	$26^2 = 676$
$7^2 = 49$	$17^2 = 289$	$27^2 = 729$
$8^2 = 64$	$18^2 = 324$	$28^2 = 784$
$9^2 = 81$	$19^2 = 361$	$29^2 = 841$
$10^2 = 100$	$20^2 = 400$	$30^2 = 900$

Is 100 a perfect square number?

In an auditorium, the number of rows is the same as the number of columns. If there are 60 chairs in a row, how many chairs are there in the auditorium?

- Which of the following is not a perfect square?
 - a) 900
 b) 800
 c) 400
 d) 100


What will be the area of a square having a side of 16 meters?

Modulo Operator

- > It gives the remainder after dividing one number by another number.
- > Modulus of any real number x will always give positive value as it's output.

 $a:b(a \div b)$

$$a, b, q, r \in \mathbb{Z}, \qquad b \neq 0, \qquad \mathbf{0} \leq r \leq |b|$$

 $a = b \cdot q + r$

 $27 \mod 4 = 27: 4 \implies 4 \cdot 6 + 3$

 $113:(-3) \Rightarrow -37 \cdot (-3) + 2$

$$-15:(-7) \implies 3\cdot(-7)+6$$

$$-5 \mod 9 = -1 \cdot 9 + 4$$

$$-19 \mod 9 = -3 \cdot 9 + 8$$

$$-15:4 \Rightarrow -3 \cdot 4 + (-3) = -15$$

$$0 \le r \le |b|$$

$$-15:4 \Rightarrow -4 \cdot 4 + 1 = -15$$

$3 \mathrm{m}$	od $10 = 3$	
$13 \mathrm{m}$	od $10 = 3$	
$23 \mathrm{m}$	od $10 = 3$	
$33 \mathrm{m}$	od $10 = 3$	

33 mod 10	0 = 3	What is -6 mod 18 ?	= 12	What is -29 mod 4?	= 3
		What is -4 mod 9?	= 5	What is -29 mod 3?	= 1
-9 mod 9	= 0	What is -9 mod 6?	= 3	What is 6 mod 18?	= 6
-8 mod 9	= 1	What is -13 mod 1?	= 0	What is 9 mod -6?	= 3
-7 mod 9	= 2			What is 4 mod 9?	= 4
-4 mod 9	= 5	What is 17 mod 7?	= 3	What is -6 mod 18?	= 12
-2 mod 9	= 7	What is -49 mod 5?	= 1	What is 7 mod 6?	= 1
-1 mod 9	= 8	What is -14 mod 2?	= 0	What 15 / 11100 0 !	·

Find the largest negative integer that when divided by nine leaves a remainder of one.

 $10:9 = 1 \cdot 9 + 1$

 $1:9=0\cdot 9+1$

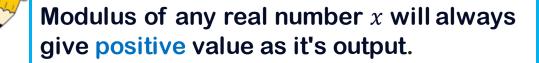
 $-8:9 = -1 \cdot 9 + 1$

The largest negative integer is -8.

When a certain integer is divided by 12, the remainder is 5. What remainder is obtained when this number is divided by 4?

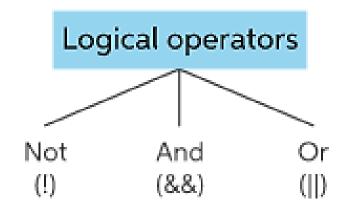
- 1) What is the remainder value:
 - ➤ 108 is divided by 3.
 - \succ 129 is divided by 7.
 - ➢ Find the product 23 ⋅ 43 modulo 8
 - ➢ Find 11 mod 8.
 - ➢ Find -3 mod 8.
 - ➢ Find 49 mod 5.

2) Perform the modular arithmetic operation What is 13 mod 1 = What is -17 mod 7 = What is -4 mod 9 = What is 4 mod 9 = What is -7 mod 6 = What is 49 mod 5 = What is -49 mod 5 = What is 25+37 mod 12 =


3) Given that $5x \equiv 6 \pmod{8}$, find x.

MOD in programming languages and calculators

Many programming languages, and calculators, have a mod operator, typically represented with the % symbol. If you calculate the result of a negative number, some languages will give you a negative result.



Logical Operators

- Logical operators are useful when we want to test multiple conditions.
- There are 3 types of logical operators and they work the same way as the boolean AND, OR and NOT operators.
- && Logical AND
 - All the conditions must be true for the whole expression to be true.
 - Example: if (a == 10 && b == 9 && d == 1)

means the *if* statement is only true when a == 10 and

b == 9 and d == 1.

Logical Operators

□ || - Logical OR

The truth of one condition is enough to make the whole expression true.

means the *if* statement is true when **either one** of *a*, *b* or *d* has the right value.

- I Logical NOT (also called logical negation)
 - Reverse the meaning of a condition
 - Example: if (!(points > 90))
 - means if points not bigger than 90.

Logical Operator

Expression Equivalent

- !(a == b)!(a == b || a == c)!(a == b || a == c)a != b & a != c
- !(a == b && c > d)
- a != b || c <= d

Answer for the following questions: True or False

If x = -2, y = 5, z = 0, and t = -4, what is the value of each of the following expressions:

- 1. x + y < z + 1
- 2. x 2 * y + y < z * 2/3
- 3. 3 * y/4%5 < 8 && y > = 4
- 4. t > 5 || z < (y + 5) & & y < 3

5. !(4+5*y) = z-4)&&(z-2<7)


-If the numerator is **smaller than** the denominator, then the remainder is equal to the numerator. 3 % 10 =3

> 3 % 5 = 3 5 % 10 = 5 78 % 112 = 78

If x = -2, y = 5, z = 0, and t = -4, what is the value of each of the following logical expressions?

- 1. x + y < z + 1
- 2. x 2 * y + y < z * 2/3
- 3. 3 * y / 4 < 8 && y >= 4
- 4. t>5∥z<2
- 5. x * y < 10 || y * z < 10
- 6. (y+2)/3 > 3 && t < 0
- 7. x * 3 > 0 || y + 5/t < 2
- 8. !(x > 0)
- 9. !(x * t < 10) || y / x * 4 < y * 2
- 10. t > 5 || z < (y + 5) & & y < 3
- 11. $!(4 + 5 * y) \ge z 4) \&\& (z 2 < 7)$

- || Logical or
- = Assignment operator

Write syntactically correct logical expressions for the following conditions:

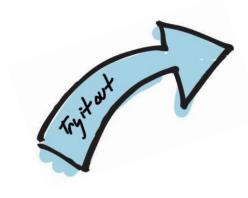
- 1. m is less than 100
- n is positive and greater than m
- 3. m is between 5 and 10 (inclusive)
- k is less than 1 or greater than 2
- 5. j and k are both negative
- 6. i is an even number

Given

int a = 5, b = 7, c = 17;

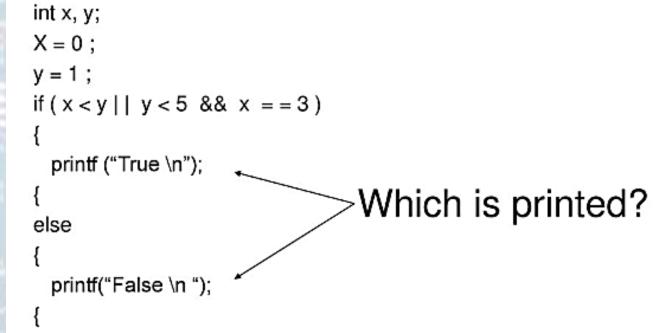
evaluate each expression as True or False.

c / b == 2
 c % b <= a % b
 b + c / a != c - a
 (b < c) && (c == 7)
 (c + 1 - b == 0) || (b = 5)

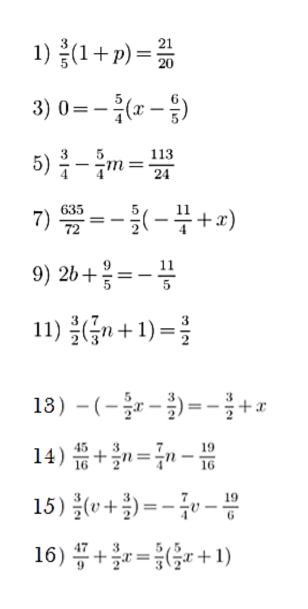


- Assume a=5, b=2, c=4, d=6, and e=3. Determine the value of each of the following expressions:
 - □a > b
 - □a != b

```
□d % b == c % b
```


- □a * c != d * b
- □a % b * c

- 25 < 7 || 15 > 36
- 15 > 36 <mark>||</mark> 3 < 7
- 14 > 7 && 5 <= 5
- 4 > 3 && 17 <= 7
- ! false
- ! (13 != 7)
- 9!=7&&!0
- 5 > 1 && 7



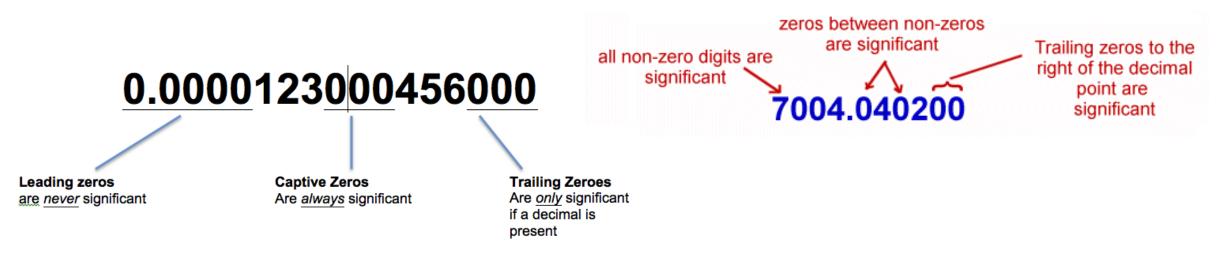
7.	$z + \frac{3}{5} = \frac{z}{5}$	8.	$\frac{y}{6} = y + 5$
9.	$\frac{7}{4}h = \frac{1}{4}h - 12w$	10.	$\frac{4}{9}w + 5 = \frac{5}{9}$
11.	$w + \frac{1}{7} = \frac{6w}{7} - 1$	12.	$6 + \frac{x}{5} = \frac{4x}{5} - 3$
13.	$\frac{y}{8} + 6 = 6 - \frac{5y}{8}$	14.	$\frac{m}{2} + 2 = \frac{4m}{5} + 2$
15.	$2 - \frac{n}{8} = 4n + \frac{5}{8}$	16.	$\frac{w}{3} + 5 = \frac{8w}{3} - 2$
17.	$\frac{5y}{2} - 9 = \frac{2y}{3} + 2$	18.	$p - \frac{p}{8} = \frac{p}{4} - 10$
19.	$1 - \frac{5}{8}x = 2 - \frac{2}{3}x$	20.	$y + \frac{3}{4} = \frac{y}{4} + \frac{7}{8}$

Practice

2) $-\frac{1}{2} = \frac{3}{2}k + \frac{3}{2}$
4) $\frac{3}{2}n - \frac{8}{3} = -\frac{29}{12}$
$6) \ \frac{11}{4} + \frac{3}{4}r = \frac{163}{32}$
$8) \ -\frac{16}{9} = -\frac{4}{3}(\frac{5}{3}+n)$
10) $\frac{3}{2} - \frac{7}{4}v = -\frac{9}{8}$
12) $\frac{41}{9} = \frac{5}{2}(x + \frac{2}{3}) - \frac{1}{3}x$
17) $-\frac{7}{2}(\frac{5}{3}a+\frac{1}{3})=\frac{11}{4}a+\frac{25}{8}$
18) $-\frac{8}{3} - \frac{1}{2}x = -\frac{4}{3}x - \frac{2}{3}(-\frac{13}{4}x + 1)$
$19) \frac{1}{3}n + \frac{29}{6} = 2(\frac{4}{3}n + \frac{2}{3})$

Answers to check

1) $\frac{3}{4}$	11) 0
2) $-\frac{4}{3}$	12) $\frac{4}{3}$
3) $\frac{6}{5}$	13) - 2
4) $\frac{1}{6}$	14) 16
5) $-\frac{19}{6}$	$15) - \frac{5}{3}$
6) $\frac{25}{8}$	16) $\frac{4}{3}$
7) $-\frac{7}{9}$	$17) -\frac{1}{2}$
8) $-\frac{1}{3}$	-
9) -2	18) $-\frac{3}{2}$
10) $\frac{3}{2}$	19) $\frac{3}{2}$


Significant figures are important to show the precision of your answer. This is important in science and engineering because no measuring device can make a measurement with 100% precision. Using Significant figures allows the scientist to know how precise the answer is, or how much uncertainty there is.

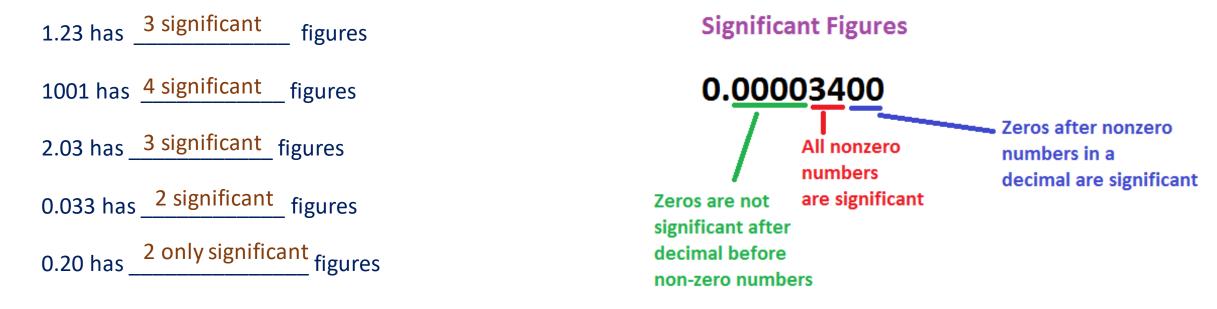
2002 has two significant zeroes, but 0.0103 has only 1 significant zero.

Significant Figures

The number of digits counted to the right from the leftmost positive digit is called the *number of significant figures*. For example, 26.103, 0.00304, 202.000 and 0.003040 are quoted to 5, 3, 6, 4 significant figures respectively.

Significant Figures Rules:

• All non-zero digits DO count.


- 3.56 = 3
- Leading zeros DON'T count.
 - (zeros in front of numbers)
 - 0.0025 = 2
- Captive Zeros DO count.
 - (zeros between non-zero numbers)
 - 1502 = 4 1.008 = 4
- Trailing Zeros DO count IF the number contains a DECIMAL.
 - (zeros at the end of numbers)
 - -100 = 1 2306.0 = 5 $1.00 \times 10^3 = 3$

Sometimes, you'll be asked to round with significant figures. Significant figures have to do with the number of digits known with a degree of certainty. Keeping track of this number is important when gathering data from an experiment because it minimizes error. Here are the rules for significant figures:

- 1. All nonzero digits are significant.
- 2. All zeroes between nonzero digits are significant.
- 3. Trailing zeroes to the right of a decimal point are significant.
- 4. Leading zeroes to the left of the first non-zero number are not significant.

Here are some examples. Can you see which rule applies?

1. Find the number of significant figure in each of the following:

(h) 82.030 mg

(a) 7.3	(a) 56.4517 g
(b) 162.5 m	(b) 5.20763 kg
(c) 306 g	(c) 33.311 km
(d) 3.57 m	(d) 50.001 cm
(e) 7.005 kg	(e) 0.0012485 m
(f) 0.045 km	(f) 0.0013020 l
(g) 0.00234 l	

2. Round off each of the following correct up to 3 significant figures:

Scientific Notation

- $193.034 = 1.93034 \times 10^2$
- $0.003040 = 3.040 \times 10^{-3}$

0.0050	The Number is a decimal less than 1 , so the Exponent will be Negative .
= 0 .0.0.5.0	Move the Decimal point to the RIGHT to create a number between 1 and 10.
= Ø Ø Ø 5.0	Remove Zeroes that are not needed. NEVER REMOVE ZEROES THAT CAME AFTER A DECIMAL POINT.
= <u>5.0</u> × 10 ⁻³ 2 Significant Figur	We moved 3 places so Power of 10 is three : 10 ⁻³

 $284.6 = 2.846 \times 10^{2}$ $0.0245 = 2.45 \times 10^{-2}$ $3125000 = 3.125 \times 10^{6}$ $-0.0042 = -4.2 \times 10^{-3}$ $0.00056 = 5.6 \times 10^{-4}$ $245000 = 2.45 \times 10^{5}$ $240.06 = 2.4006 \times 10^{2}$

 2×10^{9}

2.000000000

2,000,000,000

1 2 3 4 5 6

Convert the following numbers into scientific notation:

1)	923	 9.23 x 10 ²	
2)	0.00425	 4.25 x 10 ⁻³	
3)	4523000	 4.523 x 10 ⁶	
4)	0.94300	 9.4300 x 10 ⁻¹	
5)	6750.	 6.750 x 10 ³	
6)	92.03	 9.203 x 10 ¹	
7)	7.80	 7.80 x 10 ⁰	
8)	0.00000032	 3.2 x 10 ⁻⁷	

Convert the following numbers into standard notation:

9)	3.92400 x 10 ⁵	392400	
10)	9.2 x 10 ⁶	9200000	
11)	4.391 x 10 ⁻³	0.004391	
12)	6.825 x 10 ⁻⁴	0.0006825	
13)	4.6978 x 10 ⁴	46978	
14)	8.36 x 10 ¹	83.6	
15)	2.46 x 10 ⁻⁵	0.0000246	
16)	8.8 x 10 ²	880	

Factorial

exclamation mark

0! = 1 1! = 1 $2! = 2 \times 1 = 2$ $3! = 3 \times 2 \times 1 = 6$ $4! = 4 \times 3 \times 2 \times 1 = 24$ $5! = 5 \times 4 \times 3 \times 2 \times 1 = 120$

Example 1.

Simplify this factorial expression.

3!

Solution.

Use this formula to calculate a factorial expression:

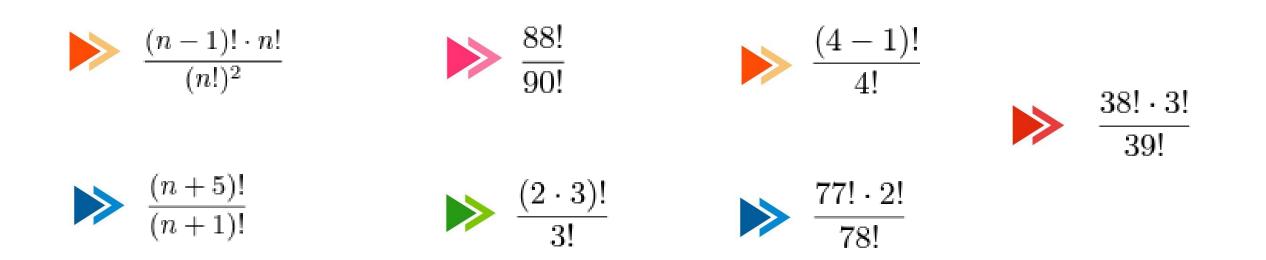
$$n! = n \cdot (n-1) \cdot (n-2) \cdot \cdots \cdot 1$$

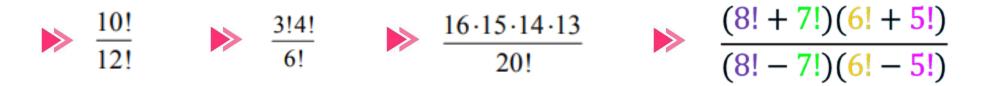
Calculate the factorial expression.

$$3! = 3 \cdot 2 \cdot 1$$

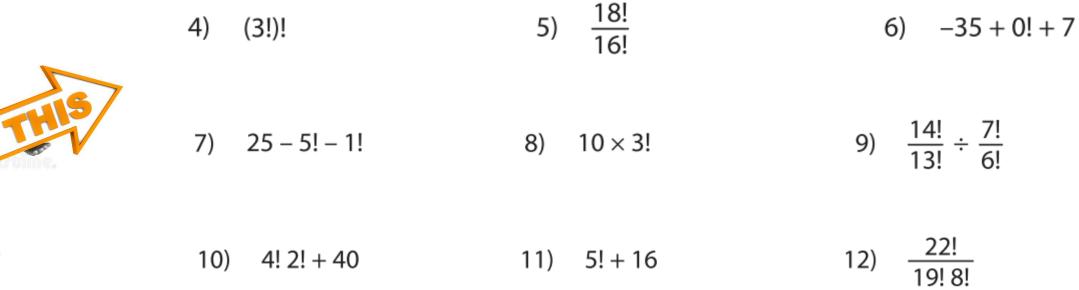
Match each expression on the left with an equivalent expression on the right.

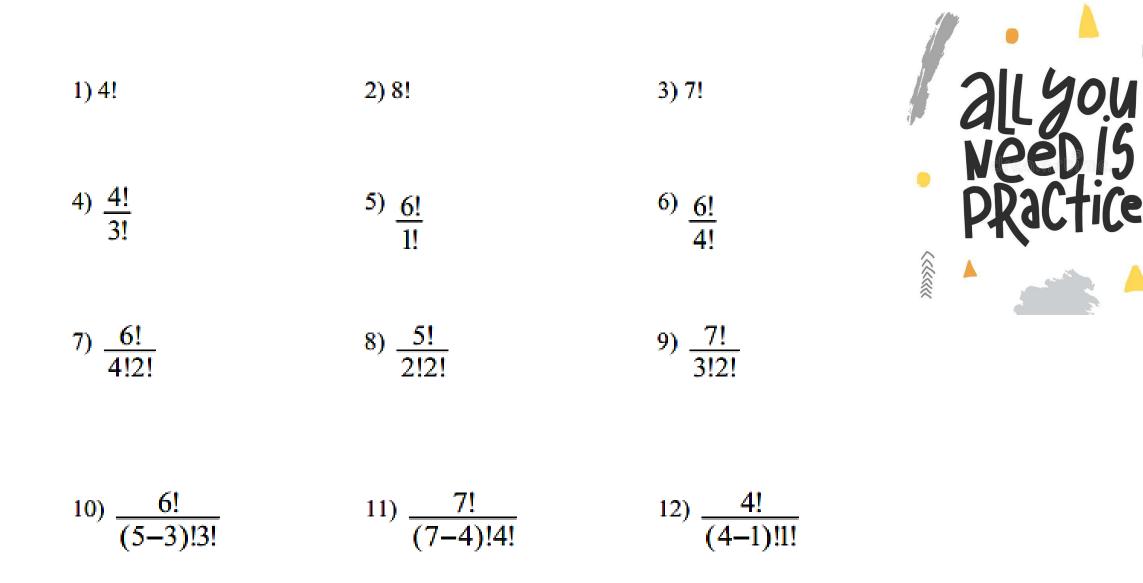
A	14!
	13!
В	52!
	51!
C	101!
	99!
D	20×19!
E	90×8!
F	30×4!

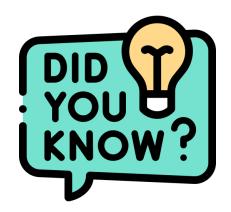

Letter		
	1	10100
	2	6!
	3	52
	4	10!
	5	14
	6	20!

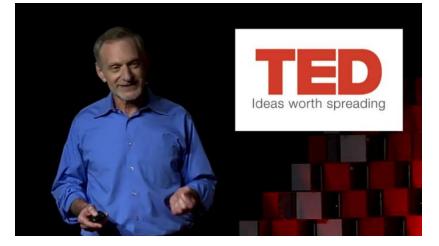

Determine the value for each expression. Simplify fully before using a calculator.

a)
$$\frac{10!}{5!}$$
 b) $\frac{21!}{14!}$ c) $\frac{9!}{3!6!}$ d) $\frac{12!}{8!4!}$ e) $\frac{7!}{2!5!} + \frac{7!}{4!3!}$


f)
$$\frac{15!}{9!6!} + \frac{15!}{10!5!}$$
 g) $2 \times \frac{5!}{2!3!}$ h) $3 \times \frac{11!}{7!4!}$




1)
$$\frac{(6-2!)!}{4!}$$
 2) $6! + (-3 \times 5!)$ 3) $9-2!$


12)

Answers: 1) 24 2) 40320 3) 5040 4) 4 5) 720 6) 30 7) 15 8) 30 9) 420 10) 60 11) 35 12) 4

What makes a good life? Lessons from the longest study on happiness

Robert Waldinger

What keeps us healthy and happy as we go through life?

https://www.youtube.com/watch?v=8KkKuTCFvzI