LECTURE 6: GRAPHTHEORY

GRAPH THEORY IN EVERYDAY LIFE

Graph theory is used in cybersecurity to identify hacked or criminal servers and generally for network security.

Graph theory, and in particular rooted tree diagrams of a genome, is used in the evolution of SARS-CoV-2.

Determining how best to add streets to congested areas of cities uses graph theory.

Graph theory is used in neuroscience to study brain network organization

Graph theory is used in DNA sequencing.
Design of radar and sonar systems uses graph theory via Golomb rulers.

A neural network

A social network

Graph Theory in Drug Design

Physical system: computer network

Model: graph structure
Vertices represent devices Edges represent links

VARYING APPLICATIONS (EXAMPLES)

- Computer networks
- Distinguish between two chemical compounds with the same molecular formula but different structures
- Pages are linked by hyperlinks on the internet
- Components of electric circuit
- Solve shortest path problems between cities
- Scheduling exams and assign channels to television stations

GRAPHS

- A graph $G=(V, E)$ consists of V, a non-empty set of vertices and E a set of edges. Edges connect either one or two vertices, called endpoints.

Simple graph:

- each edge connects two different vertices
- no two edges connect the same two vertices

A simple railway tracks connecting different cities

SOME TERMINOLOGY

Multigraph

multiple edges connecting the same two vertices
simple graph


```
Loop
```

an edge that connects a vertex to itself

Pseudograph
may include loops as well as multiple edges

multigraph

pseudograph

DIRECTED GRAPH - DIGRAPH

- A graph $G=(V, E)$ where each edge is associated with pair of vertices.The directed edge associated with (a, b) begins at a and ends at b.

SUMMARY

Type	Directed edges	Multiple edges	Loops
Simple Graph	Undirected	No	No
Multigraph	Undirected	Yes	No
Pseudograph	Undirected	Yes	Yes
Simple Directed Graph	Directed	No	No
Directed Multigraph	Directed	Yes	Yes
Mixed Graph	Both	Yes	Yes

MORE TERMINOLOGY

FOR UNDIRECTED GRAPHS

- Adjacent vertices (neighbors) - (a, b) but (b, c)
- Incident - edge B is incident with vertices e and b
- Neighborhood: $N(A)=V_{v \in A} N(v)$
$N(e)=\{a, b, c\}$
- Degree: sum of ins and outs
- Isolated (d)
- Pendant (connected only once to another vertex) (e)

d^{\bullet}
$\operatorname{deg}(\mathrm{d})=0$

THE HAND-SHAKING THEOREM

Suppose there are 6 people in a room, and each must shake hands with every other person. How many handshakes?

$$
\left.\begin{array}{l}
a=5 \\
b=4 \\
c=3 \\
d=2 \\
e=1
\end{array}\right\} \begin{array}{cc}
\text { Why not } 30 ? \\
& \text { total handshakes } \\
& G(V, E) \text { with } m \text { edges } \\
& 2 m=\sum_{v \in v} \operatorname{deg}(v) \\
2 m=30 \\
m=15
\end{array}
$$

How many edges are there if you have 10 vertices, each of degree $6 ? 2 m=60, \quad m=30$

IMPORTANT

- The following conclusions may be drawn from the Handshaking Theorem.

In any graph,
\checkmark The sum of degree of all the vertices is always even.
\checkmark The sum of degree of all the vertices with odd degree is always even.
\checkmark The number of vertices with odd degree are always even.

FOR DIRECTED GRAPHS

$$
(a, b)
$$

- Adjacent to a is adjacent to b
- Adjacent from b is adjacent from a
- Initial vertexa
- Terminal / end vertexb
- In-degree of vertex $v=\operatorname{deg}^{-}(v)$
b: $v=\operatorname{deg}^{-}(b)=2$

- Out-degree of vertex $v=\operatorname{deg}^{+}(v)$
b: $v=\operatorname{deg}^{+}(b)=1$
- $\sum_{v \in v} \operatorname{deg}^{-}(v)=\sum_{v \in v} \operatorname{deg}^{+}(v)=|E|$

REPRESENTING GRAPHS WITH MATRICES

- Reference:
\#

Adjacency matrix (vertex matrix)

DIRECTED GRAPH

Adjacency matrix (vertex matrix)

	1	2	3	4	5
1	0	1	1	1	0
2	0	0	1	0	0
3	0	1	0	0	0
4	0	0	0	1	0
5	0	1	0	0	0

Adjacency matrix (vertex matrix)

0	0	1	2	3
	0	1	1	0
1	0	0	0	0
2	0	1	0	0
	0	1	0	0
	0			

Adjacency Matrix Representation of
Directed Graph

Adjacency matrix (vertex matrix)

UNDIRECTED GRAPH

Adjacency Matrix Representation of Weighted Graph

Adjacency Matrix Representation of Undirected Graph

Adjacency matrix (vertex matrix)

Weighted Graph

The Vertex-Edge Incidence Matrix

1234				
a	1	0	1	
b	1	1	0	0
C	0	1	1	0
	0	0	0	1

a) Create a matrix considering arrows.
b) Create a matrix without arrows.

Branches

Nodes
(1)
(2)
(3)
$(4)$$\left[\begin{array}{ccccc}1 & 2 & 3 & 4 & 5 \\ -1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & -1 & -1 & -1\end{array}\right]$

A $\mathrm{C}^{\mathrm{T}} \mathrm{I}$
C

Incidence Matrix

Weighted Graph

Adjacency Matrix

HOMEWORK

SUMMARY

Types of graphs
undirected

directed

weighted

SUMMARY

Adjacency Matrix: rows and columns represent vertices.
undirected graph

SUMMARY

Incidence Matrix: rows represent vertices and columns represent edges.
undirected graph

directed graph

COMPARE

Incidence matrix
\mathbf{V}_{1}
\mathbf{V}_{2}
\mathbf{V}_{3}
$\mathbf{V}_{4}$$\left(\begin{array}{ccccc}\mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3} & \mathbf{e}_{4} & \mathbf{e}_{5} \\ 1 & 0 & 0 & 0 & -1 \\ -1 & -1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & -1 & 1\end{array}\right)$

Adjacency matrix

$$
\begin{aligned}
& \quad \mathbf{V}_{1} \mathbf{V}_{2} \mathbf{V}_{3} \mathbf{V}_{4} \\
& \mathbf{V}_{1}\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
\mathbf{V}_{2} \\
\mathbf{V}_{3} \\
\mathbf{V}_{4} & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0
\end{array}\right)
\end{aligned}
$$

三ミ READING

2．：https：／／sitn．hms．harvard．edu／flash／2021／graph－theory－I01／
N：https：／／towardsdatascience．com／what－is－graph－theory－and－why－
ジ should－you－care－28d6a715a5c2

้＇：https：／／www．xomnia．com／post／graph－theory－and－its－uses－with－ examples－of－real－life－problems／

SPECIAL TYPES OF GRAPHS

Importance of different graphs in our life:

- Visual presentation of data makes it easier to understand large amounts of data, trends, and relationships.
- The use of graphs in daily life also helps in making an analysis. For example, it provides structure in assessing performances, sales, and even deadlines.
- Also, it helps making calculations easier.

COMPLETE GRAPHS

A complete graph, denoted K_{n}, is a simple graph that contains exactly one edge between each pair of n distinct vertices.

Layout 2

Direct path between each house

Path between each house, but not necessarily direct

CYCLES AND WHEELS

- A cycle $C_{n}, n \geq 3$, consists of vertices
$v_{1}, v_{2}, \ldots, v_{n}$ and edges
$\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\}, \ldots,\left\{v_{n-1}, v_{n}\right\},\left\{v_{n}, v_{1}\right\}$.
- A wheel W_{n} is obtained when we add an additional vertex to C_{n}, and connect that vertex to each existing vertex.

W_{8}

W_{9}

N-CUBES OR HYPERCUBES

- An n-dimensional hypercube, or n-cube, denoted Q_{n}, is a graph with vertices representing the 2^{n} bit strings of length n. Adjacent vertices differ by exactly one bitposition.

$$
Q_{0}=2^{0}=1
$$

$$
Q_{3}=2^{3}=8
$$

$$
Q_{2}=2^{2}=4
$$

$$
\begin{gathered}
Q_{1}=2^{1}=2 \\
0
\end{gathered}
$$

Q_{2}

Q_{3}

FIGURE 6 The n-cube $Q_{n}, n=1,2,3$.

Vertices differ in exactly 1 bit. They get joined by edge.

HYPERCUBES APPLICATIONS

Hypercube Network

Mutations in Biology

BIPARTITE GRAPHS

- A simple graph is a called bipartite if its vertex set, V, can be partitioned into two disjoint subsets such that each edge connects a vertex from one subset to a vertex of the other.

BIPARTITE GRAPH APPLICATIONS

Finding Soulmates

Group $1 \quad$ Group 2

GRAPH COLORING

- Determine if graphs G or H are bipartite. Try the graph coloring technique!

FIGURE 8 The Undirected Graphs G and H.

Isomorphism

Yes, it is a bipartite!

No need to continue, it is not a bipartite graph!

H

COMPLETE BIPARTITE GRAPHS

- A complete bipartite graph $K_{m, n}$ is a bipartite graph with subsets of m and n vertices, respectively with an edge between each pair of vertices from opposite subsets.

Suppose Adam, Ben, Chris, David and Eric are training for tasks at work. Adam and Chris are training for task I, Ben, Chris and Eric are training for Task 2, David is training for task 3, Chris and Eric are training for task 4 and Eric is training for task 5 . Create a graph to model this, then determine if a matching is possible.

graph

matching

$$
D-3
$$

$$
E-5
$$

$$
C-4
$$

$$
A-1
$$

$$
B-2
$$

Matching

APPLICATIONS OF GRAPH C LORING

- Scheduling problems in management science
- Allocating transmission frequencies to TV and radio stations
- Study of Cell Phone traffic
- Coloring maps so that no two regions that share a boundary are the same color

GRAPH COLORING

A coloring for a graph is a coloring of the vertices in such a way that the vertices joined by an edge have different colors.

The chromatic number of a graph is the least number of colors needed to make a coloring.

COLORING A GRAPH

Step I: Choose a vertex with highest degree, and color it. Use the same color to color as many vertices as you can without coloring vertices joined by an edge of the same color.

Step 2: Choose a new color and repeat what you did in Step I for vertices not already colored.

Step 3: \quad Repeat Step I until all vertices are colored.

Color the graph and give its chromatic number.

Count degrees

SCHEDULING

- Suppose we have several classes to offer but a limited number of class times. Some classes cannot be offered at the same time because the same instructor teaches the classes. What is the minimum number of classrooms needed for the following?

Course	Conflicts with
Algebra	Geom,Trig
Geometry	Calc, Alg
Calculus	Geom,Tri, Discret
Discrete	Calc, Trig
Trigonometry	Discrete, Calc, Alg

Chromatic number is 3 . Which means we need 3 class times to hold these classes.

THREE GOALS OF SCHEDULING PROBLEMS

- Optimization issues - Try to maximize profit, minimize cost.

Example: Scheduling machine time for earliest completion time

- Equity - Try to make things fair for all participants.

Example: Schedule baseball games (same number home and away games)

- Conflict Resolution -Try to prevent conflicts from happening.

Example: Scheduling college final examinations for end of term

SCHEDULING

- An education center is offering eight courses during its summer session. The table shows with an X which pairs of courses have one or more students in common. Only two air-conditioned lecture halls are available for use at any one time.
- To design an efficient way to schedule the final examinations, represent the information in this table by using a graph. In the graph, represent courses by vertices and join two courses by an edge if there is any student enrolled in both courses.

| English (E) | X | X | | | | X | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Italian (I) | X | X | X | | X | | X |
| Spanish (S) | | | X | | | X | |
| Chemistry (C) | X | | X | X | | | |

	F	M	H	P	E	I	S	C
French (F)		X		X	X	X		X
Math (M)	X				X	X		
History (H)						X	X	X
Philosophy (P)	X							X
English (E)	X	X				X		
Italian (I)	X	X	X		X		X	
Spanish (S)			X			X		
Chemistry (C)	X		X	X				

We see that $x=4$.
This means that four times are needed.
Time Slot I: F, H
Time Slot 2: P, I
Time Slot 3: C, M, S
Time Slot 4: E

Time Slot I: F, H
Time Slot 2: P, I
Time Slot 3: C, M
Time Slot 4: E, $\underline{\mathbf{S}}$

Corncob College elects 10 students to serve as officers on 8 committees. The list of

EXAMPLE

$\Delta 0$ the members of each of the committees is:

- Corn Feed Committee: Darcie, Barb, Kyler
- Dorm Policy Committee: Barb, Jack, Anya, Kaz
- Extracurricular Committee: Darcie, Jack, Miranda
- Family Weekend Committee: Kyler, Miranda, Jenna, Natalie
- Homecoming Committee: Barb, Jenna, Natalie, Skye
- Off Campus Committee: Kyler,Jenna, Skye
- Parking Committee: Jack, Anya, Miranda
- Student Fees Committee: Kaz, Natalie

They need to schedule meetings for each of these committees, but two committees cannot meet at the same time if they have any members in common.
a) Draw a graph representing this situation. (Hint: let the vertices represent the committees.)
b) How many different meeting times will we need?

\&

- The mathematics department has six committees, each meeting once a month. How many different meeting times must
 be used to ensure that no member is scheduled to attend two meetings at the same time if the committees are
- CI = \{Arlinghaus, Brand, Zaslavsky\},
- C2 = \{Brand, Lee, Rosen\},
- C3 $=\{$ Arlinghaus, Rosen, Zaslavsky\},
- C4 = \{Lee, Rosen, Zaslavsky ,
- C5 $=\{$ Arlinghaus, Brand $\}$,
- C6 $=\{$ Brand, Rosen, Zaslavsky $\}$?

5 meeting times are needed

GRAPHING ONLINE TOOL

https://graphonline.ru/en/\#
https://mathigon.org/course/graph-theory/introduction

HOMEWORK

HOMEWORK

The mathematics department at Cornucopia College will offer seven courses next semester: Math 105 (M), Numerical Analysis (N), Linear Operators (O), Probability (P), Differential Equations (Q), Real Analysis (R), Statistics (S). The department has twelve students, who will take the following classes:

Alice: N, O, Q	Chaz :R,M
Bob: N, R, S	Dan: N, O
Greg: M, P	Emma:O,M
Homer:R,O	Kate: P,S
Inez: N, Q	Lara: P, Q
Fonz: N, R	Jill: N, S, Q

The department needs to schedule class times for each of these courses, but two courses cannot meet at the same time if they have any students in common. How many different class times will they need?

APPLICATIONS OF GRAPHS

Suppose 8 devices (computers, printers, etc.) must be connected through a local area network. Let's explore how this might look.

Star

Ring

Hybrid

Suppose you have 9 processors to carry out an algorithm. Describe three different ways to arrange the processors and the advantage or disadvantage of each.

Linear Array

Complete
Mesh Network

\vdots \vdots \vdots

TREES

This graph is not a Tree

This graph is a Tree

Tree

Not a Tree

- A tree is a simple, connected, undirected graph with no simple circuits. This means there is a unique simple path between any two of its vertices.

ROOTED TREES

- A tree in which one vertex has been designated as the root and everyedge is directed away from the root. We typically place the root at the top of the tree.

Create a rooted tree from 5.

MORE TERMINOLOGY FOR ROOTED

 TREES- m-ary tree
- binary tree:
- parent:a
- child:b,c
- sibling:b and c
- ancestor:a
- descendants:b-P
- leaf: no children
- internal vertices: has children

BINARY TREE

M-ARY TREE

BALANCED M-ARY TREES

> The height of a rooted tree is the maximum of the levels of vertices.
$>$ A rooted m -ary tree of height h is balanced if all leaves are at levels h or $h-1$.

Example: Find the level of each vertex in the following rooted tree. What is the height of this tree?

$h=4$
Not balanced: leaves
at $h-2$ also exist

BALANCED M-ARY TREES

Balancing the tree makes for better search times $O(\log (n))$ as opposed to $O(n)$.
An unbalanced tree is, in its worst case, just a linked list and the worst case to find an element becomes $O(n)$, instead of $O(\log n)$.

A balanced tree avoids this worst case, and ones that are nearly as bad.

PROPERTIES OF TREES

- A tree with n vertices has $n-1$ edges
- A full m - ary tree with i internal vertices contains $n=m i+1$ vertices
- A full m - ary tree with:
i. n vertices has $i=\frac{n-1}{m}$ internal vertices and $l=\frac{(m-1) n+1}{m}$ leaves
ii. $\quad i$ internal vertices has $n=m i+1$ vertices and $l=(m-1) i+1$ leaves
iii. l leaves has $n=\frac{(m l-1)}{m-1}$ vertices and $i=\frac{l-1}{m-1}$ internal vertices

Suppose someone starts a chain letter. Each person is asked to send the letter to four other people. Everyone does it. How many people have seen the letter, including the original sender, if no one receives more than one letter, and the chain ends after 100 people read it but did not send it on. How many people sent out the letter?

It is a tree, because no one receives more than one letter.
How many people sent out the letter? $\boldsymbol{i}=$?

$$
\begin{array}{l|}
\text { leaves }=100 \\
m=4 \text { (full m-ary tree) }
\end{array} n=\frac{m l-1}{m-1}
$$

internal vertices

$$
i=\frac{l-1}{m-1}
$$

How many people have seen the letter: $n=$?

$$
n=\frac{4(100)-1}{4-1}=\frac{399}{3}=133
$$

$$
i=\frac{100-1}{4-1}=\frac{99}{3}=33
$$

A chain letter starts when a person sends a letter to five others. Each person who receives the letter either sends it to five other people who have never received it or does not send it to anyone. Suppose that 10,000 people send out the letter before the chain ends and that no one receives more than one letter. How many people receive the letter, and how many do not send it out?

```
i internal vertices has n=mi+1 vertices and l=(m-1)i+1 leaves
```

$$
\begin{aligned}
& m=5 \text { (full 5-ary tree) } \\
& i=10000
\end{aligned}
$$

How many do not send it out: $l=$?

$$
l=(5-1) \cdot 10000+1=40001
$$

How many people receive the letter: $n=$?

$$
n=5 \cdot 10000+1=50001
$$

* How many matches are played in a tennis tournament of 27 players?

26 matches

* There are 256 players in a chess tournament (singles). Two players play a match. Matches are played on a knockout basis, the loser is eliminated after each match. How many matches need to be played to declare a winner? There is no draw.

```
255 matches
```

In both questions, idea is the same:
$n=($ number of players $)=$ number of vertices
Find number of edges?

WHICH OF THESE
 GRAPHSARE TREES?

Answer these questions about the rooted tree illustrated.
a) Which vertex is the root?
b) Which vertices are internal?
c) Which vertices are leaves?
d) Which vertices are children of j ?
e) Which vertex is the parent of h ?
f) Which vertices are siblings of o ?
$g)$ Which vertices are ancestors of m ?
h) Which vertices are descendants of b ?

DIJKSTRA'S SHORTEST PATH ALGORITHM

- Objective: to find the shortest path between any two vertices in a graph.
- Digital Mapping Services in Google Maps
- Social Networking Applications
- Telephone Network
- IP routing to find Open shortest Path First
- Flighting Agenda
- Designate file server
- Robotic Path

Find the shortest path from vertex A to every other vertex

Vertex	Shortest distance from A	Previous vertex
A	0	
B	3	D
C	7	E
D	I	A
E	2	D

Consider the start vertex, A

Distance from A to $A=0 \quad$ Distances to all other vertices from A are unknown, therefore ∞ (infinity)

Vertex	Shortest distance from A	Previous vertex
A	0	
B	∞	
C	∞	
D	∞	
E	∞	

Visited []	Unvisited [A, B, C, D, E]

Visit the unvisited vertex with the smallest known distance from the start vertex

This time around, it is vertex D

Visited [A]	Unvisited [B, C, D, E]

We are currently visiting D and its unvisited neighbors are B and E

For the current vertex, calculate the distance of each neighbor from the start vertex

Vertex	Shortest distance from A	Previous vertex
A	0	
B	$6 \gg 3$	A >D
C	∞	
D	1	A
E	2	D

Visited [A, D]	Unvisited [B, C, E]

Visit the unvisited vertex with the smallest known distance from the start vertex

This time around, it is vertex E

Visited [A, D, E]	Unvisited [B, C]

Visited [A, D, E, B]	Unvisited [C]

We are currently visiting C and it has no unvisited neighbors

Vertex	Shortest distance from A	Previous vertex
A	0	
B	3	D
C	7	E
D	1	A
E	2	D

Visited [A, D, E, B, C]	Unvisited []

ALGORITHM

- Let distance of start vertex from start vertex $=0$
- Let distance of all other vertices from start $=\infty$ (infinity)

Repeat

- Visit the unvisited vertex with the smallest known distance from the start vertex
- For the current vertex, examine its unvisited neighbors
- For the current vertex, calculate distance of each neighbor from start vertex
- If the calculated distance of a vertex is less than the known distance, update the shortest distance
- Update the previous vertex for each of the updated distances
- Add the current vertex to the list of visited vertices

Until all vertices visited

ALGORITHM

- Let distance of start vertex from start vertex $=0$
- Let distance of all other vertices from start $=\infty$ (infinity)

WHILE vertices remain unvisited

- Visit unvisited vertex with the smallest known distance from the start vertex (call this current vertex)
- FOR each unvisited neighbor of the current vertex
- Calculate distance from start vertex
- If the calculated distance of this vertex is less than the known distance
- Update the shortest distance to this vertex
- Update the previous vertex with the current vertex
- end if
- NEXT unvisited neighbor
- Add the current vertex to the list of visited vertices

END WHILE

PRACTICE

Find the shortest path from vertexA to all other vertices.

\mathbf{V}	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{F}	\mathbf{G}	\mathbf{H}
\mathbf{A}	0_{A}	8_{A}	2_{A}	5_{A}	∞	∞	∞	∞
C		8_{A}	2_{A}	4_{C}	7_{C}	∞	∞	∞
D		6_{D}		4_{C}	5_{D}	10_{D}	7_{D}	∞
E		6_{D}			5_{D}	10_{D}	6_{E}	∞
B		6_{D}				10_{D}	6_{E}	∞
G						8_{G}	6_{E}	12_{G}
F						8_{G}		11_{F}
H								11_{F}

TRY IT

Show your solution in a table format as shown below.

Vertex	Shortest distance from A	Previous vertex
a	0	
b		
c		
d		
e		
z		

CONTINUE THE SOLUTION

\boldsymbol{v}	\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{c}	\boldsymbol{d}	\boldsymbol{e}	\boldsymbol{f}	\boldsymbol{g}
\boldsymbol{a}	0_{a}	3_{a}	5_{a}	6_{a}	∞_{a}	∞_{a}	∞_{a}
b	0_{a}	3_{a}	5_{a}	5_{b}	∞_{a}	∞_{a}	∞_{a}
c	0_{a}	3_{a}	5_{a}	5_{b}	11_{c}	8_{c}	12_{c}
d	0_{a}	3_{a}	5_{a}	5_{b}	11_{c}	8_{c}	12_{c}
f	0_{a}	3_{a}	5_{a}	5_{b}	11_{c}	8_{c}	9_{f}

TRY IT

Find the shortest path from vertexA to all other vertices.

Dijkstra's Algorithm

Find the shortest path from vertex 1 to any other vertex.

Show your solution in a table format (for each vertex).

Find the shortest path from vertex a to each vertex using Dijkstra's algorithm.

Vertex	Known	Distance	Path
A	T	0	-
B	T	4	A
C	T	7	B
D	T	8	E
E	T	$\mathbf{1}$	A
F	T	6	I
G	T	6	E
H	T	8	E
I	T	$\mathbf{3}$	E

PRACTICE on your OWN

Dijkstra's algorithm

Finding the shortest path from a vertex to any other vertices.

Show your solution in a table format (both).

Use Dijkstra's algorithm to find the shortest route from \mathbf{A} to J. State your shortest route and its length.

Route: A C F E G J
Length: 53 km

HOME WORK

Use Dijkstra's algorithm to find the shortest route from A to any other vertices. State your shortest route and its length.

Kütahya is a city famous for its ceramics. A company located in Kütahya will distribute the ceramic dinner sets it produced to other provinces in the Aegean Region. The distribution truck of each province is separate. A route for each truck is required. What are the shortest distance routes to the seven provinces in the region starting from Kütahya? Show your answer by creating a model. To solve the problem, you may use the map below and the distances between the provinces.

Recall: trees are graphs that have no circuits.

Subgraph

A subgraph for a graph is a graph whose vertices and edges are subsets of the original graph.

Not a tree

SPANNING TREES

- A spanning tree for a graph is a subgraph that includes every vertex of the original and is a simple tree with no cycles and loops.

Find the spanning tree for the graph below.

This graph has 8 vertices, 9 edges and 2 circuits.

A spanning tree for 8 vertices must have 7 edges.
We must remove 2 edges and break 2 circuits.
We break the two circuits by removing a single edge from each. Two possibilities of many:

Find all spanning tree for the graph below.

This graph has 7 vertices, 7 edges and I circuit.

A spanning tree for 7 vertices must have 6 edges.
We must remove I edge and break the circuit.

Find 3 different spanning trees for the graph below.

MINIMUM SPANNING TREE (MST)

- total / sum of weights of edges must be minimum.

Graph

Spanning Tree Cost $=13$

Minimum Spanning Tree, Cost = 7

Define MST

A spanning tree for 5 vertices must have 4 edges.

TRY IT

IF THERE ARE THOUSANDS OF VERTICES AND EDGES, HOW WILL IT BE SOLVED?

Algorithms:

Prim's Algorithm

Kruskal's Algorithm

PRIM'S ALGORITHM

To find the MST we can use Prim's Algorithm (Greedy Algorithm)

- Basically, Prim's algorithm is a modified version of Dijkstra's algorithm. First, we choose a node to start from and add all its neighbors to a priority queue.
- Step I:

Select any node to be the first of T.

- Step 2:

Consider which arcs connects nodes in T to nodes outside T. Pick 1 with minimum weight (if more than 1 , choose any). Add this arc and node to T .

- Step 3:

Repeat Step 2 until T contains every node of the graph.

	A	B	C	D	E
A	-	6	4	8	2
B	6	-	5	-8	6
C	4	5	-	9	4
D	-8	8	9	-	7
E	2	6	4	7	-

Converting a network to matrix form

[^0]
Weight:

$7+2+4+5=18$

Prim's Algorithm

Step I - Remove all loops and parallel edges

Step 2 - Choose any arbitrary node as root node

Step 3 - Check outgoing edges and select the one with less cost

Practice Makes Perfect

 Prim's Algorithm

Consider the following pseudocode for Prim's algorithm.

```
Algorithm 2: Prim's Algorithm
    Data: G: The given graph
        source: The node to start from
    Result: Returns the cost of the MST
    totalCost }\leftarrow0\mathrm{ ;
    included }\leftarrow{\mathrm{ false };
    Q.addOrUpdate(source, 0, \Phi);
    while \negQ.empty() do
        u}\leftarrow\mathrm{ Q.getNodeWithLowestWeight();
        totalCost }\leftarrow\mathrm{ totalCost + u.weight;
        if u.edge }\not=\Phi\mathrm{ then
        mst.add(u.edge);
        end
        included[u.node] }\leftarrow\mathrm{ true;
        for v G G.neighbors(u.node) do
            if \included[v.node] then
            Q.addOrUpdate(v.node, weight(u.node, v.node),
            v.edge);
            end
        end
    end
    return totalCost, mst;
```


KRUSKAL'S ALGORITHM

To find the MST of a graph with n nodes

- Step I:

Choose the arc of least weight.

- Step 2:

Choose from those arcs remaining the arc of least weight which do not form a cycle. (if more than I, choose any)

- Step 3:

Repeat Step 2 until ($\mathrm{n}-\mathrm{I}$) arcs have been chosen.

$$
\begin{aligned}
& A E=2 \\
& E C=4 \\
& E D=7 \\
& B C=5
\end{aligned}
$$

Find the Minimum Spanning Tree using Kruskal's Algorithm:
a)

b)

Answer

Find the Minimum Spanning Tree using Kruskal's Algorithm:
a)

Arcs: BE, AB, BD, GI, JH, AC, GJ, EG, DF. Total length=56
b)

Arcs: $\mathrm{CF}, \mathrm{AD}, \mathrm{GH}, \mathrm{DG}, \mathrm{AE}, \mathrm{EC}, \mathrm{HI}, \mathrm{CB}$. Total length $=53$

Take a look at the pseudocode for Kruskal's algorithm.

```
Algorithm 1: Kruskal Algorithm
    Data: edges: List of edges of the graph
    Result: Returns the cost and the edges of the MST
    sort(edges);
    totalCost \leftarrow0;
    for edge }\in\mathrm{ edges do
        if ᄀ dsu.isMerged(edge.u, edge.v) then
            totalCost \leftarrow totalCost + edge.weight;
            mst.add(edge);
            dsu.merge(edge.u, edge.v);
            end
    end
    return totalCost, mst;
```


What is difference between Prims and Kruskal algorithm?

$>$ Prim's Algorithm grows a solution from a random vertex by adding the next cheapest vertex to the existing tree.
$>$ Kruskal's Algorithm grows a solution from the cheapest edge by adding the next cheapest edge to the existing tree / forest.

	Kruskal	Prim
Multiple MSTs	Offers a good control over the resulting MST	Controlling the MST might be a little harder
Implementation	Easier to implement	Harder to implement
Requirements	Disjoint set	Priority queue
Time Complexity	$O(E \cdot \log (V))$	$O(E+V \cdot \log (V))$

As we can see, the Kruskal algorithm is better to use regarding the easier implementation and the best control over the resulting MST. However, Prim's algorithm offers better complexity.

PRIM'S \& KRUSKAL'S ALGORITHMS IN REAL LIFE

Wiring : Better Approach

Minimize the total length of wire connecting the customers

APPLICATIONS

APPLICATIONS WHERE KRUSKAL'S
 ALGORITHM IS GENERALLY USED:

- I. Landing cables
- 2.TV Network
- 3.Tour Operations
- 4.LAN Networks
- 5.A network of pipes for drinking water or natural gas.
- 6.An electric grid
- 7. Single-link Cluster

APPLICATIONS WHERE PRIM'S ALGORITHM IS GENERALLY USED:

- I.All the applications stated in the Kruskal's algorithm's applications can be resolved using Prim's algorithm (use in case of a dense graph).
- 2. Network for roads and Rail tracks connecting all the cities.
- 3. Irrigation channels and placing microwave towers
- 4. Designing a fiber-optic grid or ICs.
- 5.Travelling Salesman Problem.
- 6. Cluster analysis.
- 7. Pathfinding algorithms used in $\mathrm{Al}($ Artificial Intelligence).
- 8. Game Development
- 9. Cognitive Science

Find MST using:
a) Prim's Algorithm
b) Kruskal's Algorithm

Graph 0

Graph 3

Given Graph

Homework

[^0]: Step I:
 Select any node to be the first of T.

 - Step 2:

 Circle the new node of T in the top row and cross out the row corresponding to this new node.

 - Step 3:

 Find the smallest weight left in the columns of the nodes of T. Circle this weight.Then choose the node whose row the weight is in to join T. If several choose any.

 - Step 4

 Repeat steps 2 and 3 untilT contains every node.

