
Tishk International University
Science Faculty
IT Department

Operating Systems

3rd Grade - Fall Semester

Lecture 4: Memory Management

Instructor: Alaa Ghazi

Lecture 4: Memory Management - Agenda
 Background

Main Memory
 Cache Memory
 Hardware Address Protection
 Address Binding

 Memory Management Approaches

1. Single Contiguous Model

2. Partition with Contiguous Allocation

3. Swapping

4. Segmentation

5. Paging

 Virtual Memory Basics

 Optimizing Applications Performance

Background

 The second most important hardware resource in the
computer system after the CPU is the Memory.

 Memory accesses and memory management are a very
important part of modern computer operation. Every
instruction has to be fetched from memory before it can
be executed, and most instructions involve retrieving
data from memory or storing data in memory or both.

 The introduction of multi-tasking OSes increases the
need for complex memory management, because as
processes are swapped in and out of the CPU, so must
their code and data be swapped in and out of memory,
all at high speeds and without interfering with any other
processes.

What is Main Memory

 Main Memory or (Random Access Memory -
RAM): is the area in a computer in which data is
stored for quick access by the computer's processor.

 RAM speed is measured in nanoseconds (billionths
of a second), while magnetic and SSD storage is
measured in milliseconds (thousandths of a second).

 Program must be brought (from disk) into memory
and placed within a process for it to be run

 Main memory and registers are only storage CPU
can access directly

CPU-Main Memory Connection
(not required in the exam)

Up to 2k addressable

k-bit
address bus

n-bit
data bus

Control lines

(, MFC, etc.)

Processor Memory

locations

Word length = n bits

WR /

Memory Modules Samples
(not required in the exam)

Cache Memory
 Cache Memory: is a small-sized type of volatile

computer memory that provides high-speed data access
to a processor and stores frequently used computer
code and data.

 It is the fastest memory in a computer, and is typically
integrated onto the motherboard and directly embedded
in the processor or main random access memory (RAM).

Cache Memory Levels – Physical
(not required in the exam)

Hardware Address Protection
 Hardware Address Protection is the restriction of User

processes so that they only access memory locations that
"belong" to that particular process.

 A pair of base and limit registers define the logical
address space of a process.

 CPU must check every memory access generated in user
mode to be sure it is between base and limit registers for
that process.

Libraries Linking
 Static linking – It is the case when system libraries and

program code are combined by the loader into the binary
program image.

 Dynamic linking – It is the case when linking of the
routines to the main program is postponed until execution
time.

 Stub is a small piece of code, used to locate the
appropriate memory-resident library routine and replaces
itself with the address of the routine, and executes the
routine

 Advantages of Dynamic Linking and Shared Libraries:

1. Less program loading time

2. Less memory space

3. Less disk space to store binaries

Static Linking Diagram

Address Binding Schemes

 Address binding of instructions and data to memory
addresses can happen at three different schemes:

 Compile time: when the absolute code will be
generated by the compiler, containing actual physical
addresses

 Load time: the compiler must generate relocatable
code, which references addresses relative to the start
of the program.

 Execution time: If a program can be moved around
in memory during execution, then binding must be
delayed until execution time. This is the method which
is implemented by most modern OSes.

Memory Management Approaches

1. Single Contiguous Model
2. Partition with Contiguous Allocation
3. Swapping
4. Segmentation
5. Paging

1. Single Contiguous Model
 Is one of the most primitive ways of managing

memory especially done for the older on a
operating systems.

 So RAM is occupied by one process at a time.
Essentially at any particular instant there is only
one process and its memory size is restricted by
the RAM size.

 After this process completes executing, the next
process will be loaded into the RAM.

2. Partition with Contiguous Allocation
 In this approach at any instant of time, we could have

multiple processes that occupy the RAM simultaneously
but each process should be contained in a single
contiguous partition of memory.

 This approach is a slight improvement over the single
contiguous model.

 Main memory is usually partitioned into two parts:

 Resident operating system area.

 User processes area.

 The Partition Table would have the base address of a
process, the size of the process and a process identifier.

 When a process completes execution, the area in RAM
that it holds will be de-allocated. Consequently the entry
corresponding to the partition table will be free.

Limitations of
Partition with Contiguous Allocation

 Each Process needs to be entirely in RAM.

 Allocation needs to be in contiguous memory

 External Fragmentation

 Limit the size of the process by RAM size

 Performance Degradation

External Fragmentation

 External Fragmentation – It is the case when total
memory space exists to satisfy a request, but it is not
contiguous. This is a problem with Partition with
Contiguous Allocation memory management approach.

Compaction

 Compaction: is shuffling memory contents to place all
free memory together in one large block

 Compaction is a solution to Reduce external
fragmentation.

 Compaction is possible only if relocation is dynamic,
and is done at execution time

3. Swapping
 Swapping is a technique in which a process can

be swapped temporarily out of memory to
Backing Store (HD or SSD), and then brought
back into memory for continued execution

 Backing store – is a fast disk large enough to
accommodate copies of all memory images for all
users; must provide direct access to these
memory images

 Standard swapping is not used in modern
operating systems but a modified version is
commonly used that is Enable Swap only when
free memory is extremely low.

Swapping (Cont.)
 Q\ Does the swapped out process need to swap back in to

same physical addresses?

 A\ If compile-time or load-time address binding schemes
are used, then processes must be swapped back into the
same memory location. If execution time binding is used,
then the processes can be swapped back into any available
location.

 Q\ What is the swapping procedures that are found on
current operating systems (i.e., UNIX, Linux, and
Windows)?
 Swapping normally disabled
 Started if more than threshold amount of memory is

allocated
 Disabled again once memory demand is reduced below

threshold

Schematic View of Swapping

4. Segmentation
 Segmentation: is a Memory-management approach

that supports the view of the program as a collection
of segments by segmenting processes and loading
them into different non-contiguous addressed spaces
in memory with a segment number and an offset.

 In Segmentation we have a Segment Descriptor
Table which is stored in memory. Each row in the
segment descriptor table refers to one particular
segment. For instance, the Data segment 2 is at an
offset 2 in the Segment descriptor table, and the offset
would specify the Base address in RAM and the Limit
of the segment.

5. Paging
 Paging is to divide physical memory into fixed-sized

blocks called frames and divide logical memory into
blocks of same size called pages

 Physical address space of a process can be
noncontiguous.

 Paging eliminates external fragmentation , but it still
suffers from Internal fragmentation

 Page Size is a power of 2, usually between 512 bytes
and 16 Mbytes

 To load a process of size S where

(N-1) pages < S < (N) pages,

it is required to find N free frames to load the process.

Page Table
The page table is the table used to look up what frame a
particular page is stored in at the moment. It translates logical to
physical addresses.

Associative Memory is a special fast-lookup hardware cache
that can solve the two memory access problem if page table is
stored in main memory.

Q\ Why Page size selection is critical?

 A large page will result in increase of internal fragmentation

 A small page size will increase the size of the page table

The Page Table Structure can be:

 Basic Paging: A single page table which stores the page
number and the offset

 Hierarchical Paging: A multi-level table which breaks up the
virtual address into multiple page tables.

Basic Paging Diagram

What is Kilobyte?

The Page Table size Calculation
 Example: Calculate the page table size considering

(32-bit) logical address space and Entry size = 4 Bytes

 For the two cases below

A) Page size of 2 K Bytes

B) Page size of 4 K Bytes

 Solution:

A) Page size of 2 KB = 2 * 210 = 211 Bytes

No. of table entries = address space / page size

= (232 / 211) = 221 = 2 * 220 = 2 M entries

Page table size = table entries * entry size = 2 M * 4 = 8 M Bytes

B) Page size of 4 KB = 4 * 210 = 212 Bytes

No. of table entries = address space / page size

= (232 / 212) = 220 = 1 M entries

Page table size = table entries * entry size = 1 M * 4 = 4 M Bytes

Internal Fragmentation
 Internal Fragmentation – is this size difference in

memory that happens when we divide memory to
fixed partitions and then allocated memory may be
slightly larger than requested memory.

Calculating Internal Fragmentation
Example: Calculate the number of pages and internal fragmentation

considering:

A) Page size = 2048 bytes

B) Page size = 4096 bytes

Assuming that Process size = 70450 bytes for both cases.

Solution:

A) No. of pages= ceiling (process size / page size)

= ceiling (70450 / 2048) = 35 pages

Internal fragmentation = (No. of pages * page size) – process size

= 35 * 2048 – 70450 = 1230 bytes

B) No. of pages= ceiling (process size / page size)

= ceiling (70450 / 4096) = 18 pages

Internal fragmentation = (No. of pages * pages size) – process size

= 18 * 4096 – 70450 = 3278 bytes

Shared Pages

 Shared code

 One copy of read-only code can be shared among
processes (i.e., text editors, compilers, window systems)

 It is also useful for inter-process communication if
sharing of read-write pages is allowed

 Private code and data

 Each process keeps a separate copy of the code and
data

 The pages for the private code and data can appear
anywhere in the logical address space

Shared Pages Diagram

Virtual Memory Basics

 Virtual Memory increases the available memory of the
computer by enlarging the "address space," or places in
memory where data can be stored. It does this by using
hard disk space for additional memory allocation.

 However, since the hard drive is much slower than the
RAM, data stored in virtual memory must be mapped back
to real memory in order to be used.

 Q\ Why most real processes do not need all their pages?

 Error handling code is not needed unless that error
occur.

 Only a small fraction of the arrays are actually used.

 Certain routines of programs are rarely used.

Logical vs. Physical Address Space
 The concept of a logical address space that is

bound to a separate physical address space is
central to virtual memory
 Logical address (virtual address) – it is the

address generated by the process executing
currently on the CPU.

 Physical address – it is the address seen by
the memory management unit

 Memory-Management Unit: is the Hardware
device that at run time maps virtual to physical
address

 The user process deals with logical addresses; it
never sees the real physical addresses

Benefits of Virtual Memory
 In virtual memory, Logical address space can therefore be

much larger than physical address space

 Every process executing in the system would have its own
process page table

 Benefits of Virtual Memory are:
 Only part of the program needs to be in memory for execution

 Allows address spaces to be shared by several processes

 More programs can run concurrently

Page Fault: is a type of trap raised when a running process
accesses a memory page that is not currently in the physical
RAM

Page replacement is finding some page in memory, which is
not really in use, in order to page it out.

The General Layout of Virtual Memory

Backing Store

Thrashing and Memory Leaks

 Thrashing: it is the case when a process does not have
“enough” pages, then page-fault rate will become very
high and the process will be busy swapping pages in and
out

 Memory Leak: occurs when an application is using more
RAM than it normally does which in turn slows down the
system, causing it to struggle with performing even the
basic tasks.

Optimizing Applications Performance

 Optimizing Applications depends heavily on memory
organization in the computer system. The next few
points offer some pointers for improving the
performance of applications under Windows :

1. Adding More Physical Memory

2. Defragment the Hard Drive containing the paging file

3. Installing Applications to the Fastest Hard Drive

4. Getting the Latest Device Drivers

5. Move Extra workload to Another Server

1. Adding More Physical Memory

 All applications run in RAM, of course, so the more RAM
you have, the less likely it is that Windows will have to
store excess program or document data in the page file
on the hard disk, which is a real performance killer.

Use one of the following Windows monitoring tools to
watch the available memory:

 Task Manager —Display the Performance tab and
watch the Physical Memory: Available value. .

 Resource Monitor —Display the Memory tab and
watch the Available to Programs value. .

 Performance Monitor —Start a new counter, open the
Memory category, and then select the Available Mbytes
counter.

2. Defragment the Hard Drive containing the
Paging File
 This is needed when the page file is located on a disk that

is heavily used by other applications.

 Hard Disk Defragmentation is to organize the files parts in
contiguous sectors on the disk, thereby improving computer
performance and maximizing disk space.

 The solution steps are:
1. move the page file to another drive temporarily,

2. set the paging file on the original drive to be fragmented to 0 MB.

3. reboot the system to enable the other paging file to be used.

4. perform the disk defragmentation on the original drive.

5. set the paging file on the original drive to the necessary values,
and reboot.

Paging file in Windows 10
(not required in the exam)

3. Installing Applications to the Fastest Hard
Drive
 If your system has multiple hard drives that have

different performance ratings, install your applications on
the fastest drive. This enables Windows to access the
application’s data and documents faster.

4. Getting the Latest Disk Drivers
 If your application works with a device, check with the

manufacturer or Windows Update to see whether a
newer version of the device driver is available. In
general, the newer the driver, the faster its performance.

5. Move Extra workload to Another Server
 For Server Machine, you may also elect to offload some

of the workload to another system.

