
6.1

Tishk International University
Science Faculty
IT Department

Operating Systems

3rd Grade - Fall Semester

Lecture 6 Deadlock

Instructor: Alaa Ghazi

6.2

Lecture 6: Deadlock
Agenda

 What is a Deadlock?

 Deadlock Conditions

 Ways for Handling Deadlocks

 Resource Allocation Graph

 What is a Livelock?

 What is a Zombie Process?

6.3

What is a Deadlock?

Deadlock is when a set of blocked processes each
holding a resource and waiting to acquire a resource held
by another process.

If deadlocks are neither prevented nor detected, then
when a deadlock occurs the system will gradually slow
down, as more and more processes become stuck waiting
for resources currently held by the deadlock and by other
waiting processes.

6.4

Basic Deadlock Diagram

6.5

Deadlocks Conditions

Deadlocks four conditions are required simultaneously to cause
deadlock, so deadlock can be avoided by avoiding at least one of
the conditions.

Deadlock occurs = Cond1 AND Cond2 AND Cond3 AND Cond4

1. Mutual Exclusion: only one process at a time can use a
resource.

2. Hold and Wait: a process holding resource is waiting to acquire
additional resources held by other processes

3. No Preemption (No Interruption) a resource can be released
only by the process holding it upon its task completion.

4. Circular Wait it is the case when the processes are waiting
circularly (infinitely). The processes are waiting circularly and
forming a cycle which never breaks.

6.6

Ways for Handling Deadlocks

Generally speaking there are three ways of handling
deadlocks:

 Deadlock Prevention - Do not allow the system to get
into a deadlocked state. Prevention algorithms are difficult
to implement.

 Deadlock detection and recovery - Abort a process or
preempt some resources when deadlocks are detected.

 Ignore deadlock - If deadlocks only occur once a year or
so, it may be better to simply let them happen and reboot
as necessary than to incur the constant overhead and
system performance penalties associated with deadlock
prevention or detection. This is the approach that both
Windows and UNIX take.

6.7

Resource Allocation Graph (RAG)

• Deadlock can be described through a resource allocation

graph.

• The RAG consists of a set of vertices

P={P1,P2 ,…,P n} of processes and

R={R1,R2,…,Rm} of resources.

• A directed edge from a processes to a resource, Pi->R j,
implies that Pi has requested Rj.

• A directed edge from a resource to a process, Rj->Pi,
implies that Rj has been allocated by Pi.

• If the graph has no cycles, deadlock cannot exist. If the
graph has a cycle, deadlock may exist.

6.8

Resource Allocation Graph (RAG)

6.9

RAG with cycle and deadlock

6.10

RAG with a cycle but no deadlock

6.11

RAG –Example1

In the example below, answer below questions:

Q1\ Which resources are assigned to p1?

Q2\ Which resources are requested by p1?

Q3\ Which processes are using resource r1?

A1\ r2

A2\ r1

A3\ p2

6.12

RAG –Example2
In the example below, answer below questions:

Q1\ Which resources are assigned to P4?

Q2\ Which resources are requested by P3?

Q3\ Which processes are using resource R4?

A1\ R2 and R4

A2\ R4

A3\ P4 and P5

6.13

What is a Livelock?

There is a variant of deadlock called livelock. This is a
situation in which two or more processes continuously
change their state in response to changes in the other
process(es) without doing any useful work. This is similar to
deadlock in that no progress is made but differs in that
neither process is blocked or waiting for anything.

A human example of livelock would be two people who
meet face-to-face in a corridor and each moves aside to let
the other pass, but they end up swaying from side to side
without making any progress because they always move
the same way at the same time.

6.14

What is a Zombie Process?

A zombie process is the process that has been
completed, but its PID and process entry remains in the
Linux process table.

Zombie processes don’t use up any system resources.
(Actually, each one uses a very tiny amount of system
memory to store its process descriptor.) However, each
zombie process retains its process ID (PID). Linux systems
have a finite number of process IDs – 32767 by default on
32-bit systems. If zombies are accumulating at a very quick
rate (for example, if improperly programmed server
software is creating zombie processes under load) the
entire pool of available PIDs will eventually become
assigned to zombie processes, preventing other processes
from launching.

