
CH3: ALGORITHMS,
FLOWCHART AND

OPERATORS

Ms. SAFA ANMAR ALBARWARY

Computer Programming And Algorithm

1st Semester

Date: 11/ 01/ 2024

Outline

◦ Algorithms

◦ Flowchart

◦ Operators

Objectives

◦ The students will learn how to:

1. Track the process of the program from the starting point till the end using Algorithms

and flowcharts.

2. How to use different types of operators with C++ Language.

Algorithm and Flow Chart

◦ Algorithm and flowchart are two types of tools to explain the process of a program.

◦ This class extends the differences between an algorithm and a flowchart, and how to create a

flowchart to explain an algorithm in a visual way.

• An algorithm is a step-by- step analysis of the process, while a flowchart explains the steps of a

program in a graphical .

◦ To write a logical step-by-step method to solve the problem is called algorithm, in other words, an

algorithm is a procedure for solving problems. In order to solve a mathematical or computer

problem, this is the first step of the procedure.

◦ An algorithm includes calculations, reasoning and data processing. Algorithms can be presented by

natural languages, flowcharts

THE ALGORITHM,

◦ The ordered set of instructions required to solve a problem is known as an algorithm.

◦ Algorithm is a finite sequence of instructions, each of which has a clear meaning and can be performed

with a finite amount of effort in a finite length of time. No matter what the input values may be, an

algorithm terminates after executing a finite number of instructions.

◦ The characteristics of a good algorithm are:

1. Precision – the steps are precisely stated (defined).

2. Uniqueness – results of each step are uniquely defined and only depend on the input and the result of the

preceding steps.

3. Finiteness – the algorithm stops after a finite number of instructions are executed.

4. Input – the algorithm receives input.

5. Output – the algorithm produces output.

6. Generality – the algorithm applies to a set of inputs.

Example, Write a algorithm to find out number is odd or even?

Ans.

step 1 : start

step 2 : input number

step 3 : Num=number / 2

step 4 : if Num=0 then

 print "number even"

 else

 print "number odd"

step 5 : stop

THE FLOWCHART,

◦ Flowchart, is a diagrammatic representation of an algorithm. A graphical representation of the sequence

of operations in an information system or program.

◦ Flowchart is very helpful in writing program and explaining program to others. Information system

flowcharts show how data flows from source documents through the computer to final distribution to

users.

◦ Program flowcharts show the sequence of instructions in a single program or subroutine.

◦ Symbols Used In Flowchart, Different symbols are used for different states in flowchart,

◦ For example: Input / Output and decision making has different symbols.

The table below describes all the symbols that are used in making flowchart:

Examples, Draw a flowchart to add two numbers entered by user.

OPERATORS AND EXPRESSIONS

◦ An operator, in computer programing, is a symbol that usually represents an action or process. These

symbols were adapted from mathematics and logic. An operator is capable of manipulating a certain

value or operand.

◦ C++ language offers many types of operators, including:

1. Arithmetic Operators

2. Assignment Operators

3. Relational Operators

4. Logical Operators

Arithmetic Operators,

CONCEPT: There are many operators for manipulating numeric values and performing arithmetic

operations.

C++ offers a multitude of operators for manipulating data. Generally, there are three types
of operators: unary, binary, and ternary. These terms reflect the number of operands an
operator requires.

1. Unary operators, only require a single operand.

2. Binary operators, work with two operands. The assignment operator is in this category.

3. Ternary operators, as you may have guessed, require three operands.

◦ Arithmetic operations are very common in programming. The table below shows the common

arithmetic operators in C++ :

◦ Increment and Decrement Operators: C++ also provides increment and decrement operators: ++ and --

respectively.

++ increases the value of the operand by 1

-- decreases it by 1

C++ Assignment Operators,

CONCEPT: In C++, assignment operators are used to assign values to variables. For example,

// assign 15 to a

 a = 15;

Here, we have assigned a value of 15 to the variable a in different ways:

Relational Operators,

CONCEPT: Relational operators allow you to compare numeric and char values and determine whether one

is greater than, less than, equal to, or not equal to another.

◦ So far, the programs you have written follow this simple scheme:

• Gather input from the user.

• Perform one or more calculations.

• Display the results on the screen.

◦ Computers are good at performing calculations, but they are also quite adept at comparing values to

determine if one is greater than, less than, or equal to the other. These types of operations are valuable

for tasks such as examining sales figures, determining profit and loss, checking a number to ensure it is

within an acceptable range, and validating the input given by a user.

Relational Operators

CONCEPT: A relational operator is used to check the relationship between two operands.

◦ For example, checks if a is greater than b a > b; Here, > is a relational operator.
It checks if a is greater than b or not.

◦ If the relation is true, It returns 1 whereas if the relation is false, it returns 0. Numeric data is compared
in C++ by using relational operators. Each relational operator determines whether a specific relationship
exists between two values.

◦ In the shown table below, lists all of C++’s relational operators.

Note: Relational operators

are used in decision-

making and loops.

Relational Operators

◦ All of the relational operators are binary, which means they use two operands. Here is an example of an

expression using the greater-than operator: x > y

◦ This expression is called a relational expression. It is used to determine whether x is greater than y.

◦ The following expression determines whether x is less than y: x < y

◦ The table shows examples of several relational expressions that compare the variables x and y:

NOTE: All the relational

operators have left-to-right

associativity. Recall that

associativity is the order in

which an operator works

with its operands.

Class Activity,

A couple of the relational operators actually test for two relationships. The >= operator
determines whether the operand on its left is greater than or equal to the operand on the right.
Assuming that a is 4, b is 6, and c is 4. State the following expression if its True or False.

 b >= a

 a >= c

 a >= 5

 a <= c

 b <= 10

 b <= a

 a != b

 b != c

 a != c

NOTE: In C++, relational
expressions represent true
states with the number 1
and false states with the
number 0.

Precedence of Relational Operators,

◦ Example: If a = 9, b = 24, and c = 0, the following statement would cause a 1 to be printed:

 cout << (c == a > b);

◦ Because of the relative precedence of the operators in this expression, a > b would be evaluated first.

Since 9 is not greater than 24, it would evaluate to false, or 0. Then c == 0 would be evaluated. Since c

does equal 0, this would evaluate to true, or 1. So a 1 would be inserted into the output stream and

printed.

 WARNING NOTE!

 Notice the equality operator is two = symbols together. Don't confuse this operator with the assignment

operator, which is one = symbol.

 The == operator determines whether a variable is equal to another value, but the = operator assigns the

value on the operator's right to the variable on its left.

Example,

Referring to the expressions shown in the table below, Assume x is 10 and y is 7. For each

expression state if its True or False.

Logical Operators

CONCEPT: Logical operators connect two or more relational expressions into one or reverse the logic of an

expression. Logical operators are used to check whether an expression is true or false. If the expression

is true, it returns 1 whereas if the expression is false, it returns 0.

oThe && Operator,

NOTE: If the sub-expression on the left side of an && operator is false, the expression on the right side will
not be checked. Since the entire expression is false if only one of the sub-expressions is false, it would waste
CPU time to check the remaining expression. This is called Short Circuit Evaluation.

o The || Operator,

o The ! Operator,

Precedence and Associativity of Logical Operators

oLogical Operators in Order of Precedence:

• The ! operator has a higher precedence than many of the C++ operators. To avoid an error, you should always

enclose its operand in parentheses unless you intend to apply it to a variable or a simple expression

with no other operators.

For example, consider the following expressions: !(x > 2) !x > 2

• The && and || operators rank lower in precedence than the relational operators, so precedence problems are less

likely to occur. If you feel unsure, however, it doesn’t hurt to use parentheses anyway. For example,

a > b && x < y is the same as (a > b) && (x < y)

a > b || x < y is the same as (a > b) || (x < y)

Class Activity,

If a = 2, b = 4, and c = 6, indicate whether each of the following conditions is true or false:

1. (a == 4) || (b > 2)

2. (6 <= c) && (a > 3)

3. (1 != b) && (c != 3)

4. (a >= -1) || (a <= b)

5. !(a > 2)

6. (b > a) || (b > c) && (c == 5)

Arithmetic operator example,

Write a program to enter two numbers and find:

A. Their summation , subtraction, multiplication, division and modulus result.

B. Their increment and decrement

C. Repeat (A) using the Assignment operators

Example, write a program to find the result for the following expressions by supposing

a = 2, b = 4, c = 6. Then,

(a == 4) || (b > 2)

(6 <= c) && (a > 3)

(1 != b) && (c != 3)

(a >= -1) || (a <= b)

!(a > 2)

(b > a) || (b > c) && (c == 5)

Example, write a program to find the circumference of a circle. Use the formula: C=2πr, where π is

approximately equivalent 3.1416. by first writing the algorithm of the program and drawing the

flowchart.

Homework, Write a program that converts the dollar to Iraqi dinar. Assume that the present

exchange rate is 130,000 against the 100 dollar. Then display the dinar equivalent exchange rate.

By first writing the algorithm of the program and drawing the flowchart.

Next Lecture

◦ making decisions (control structures)

◦ Flow of Control (IF, ELSE IF, ELSE)

References

Tony Gaddis, Starting Out with C++ from Control Structures to Objects, 8th Edition (Main).

