
Tishk International University
Science Faculty
IT Department

Functions

Programming II - IT-118

1st Grade - Fall Semester
Lecture #2

Instructor: Hemin Ibrahim
Email: hemin.ibrahim@tiu.edu.iq

1

✓ Introduction to functions

✓ Define function

✓ Call function

✓ Function with parameters

✓ Function Prototype

✓ Pass by Value

✓ The return Statement

Overview

2

Textbook Source

Tony Gaddis, Starting Out with C++: From Control Structures through Objects, 8th Edition
✓ Chapter 8 (from page 305 to 363)

3

4

Modular Programming

5

■ Modular programming: breaking a program up into smaller units

■ Function: a collection of statements to perform a specific task

■ Advantages for modular programming

– Simplifies the process of writing programs
– Improves debugging of programs

Modular Programming

6

7

Function Concept

8

Output

Function Concept

9

Function Definition

■ Definition includes

name: name of the function. Function names follow same rules as

variable names
parameter list: variables that hold the values passed to the function
body: statements that perform the function’s task
return type: data type of the value the function returns to the part of the

program that called it

10

Define and Call Function in C++

11

Define and Call Function with parameters

12

Function Type

Function parameters

Call function

Calling a Function
■ main is automatically called when the program starts

■ main can call any number of functions

■ Functions can call other functions

13

Function called inside loop

Output

14

Function Procedure

15

Functions inside each other

Output

16

Cube Function, using Parameters

Parameter

17

Simple Sum Function

18

Sum Function

19

Sum Function

20

Factorial Calculation

21

■ A classic example of recursion is calculating the factorial of a
number.

■ The factorial of a non-negative integer n is denoted as n! and is
defined as the product of all positive integers less than or equal to
n.

■ For example, 5! (read as "5 factorial") is calculated as 5 × 4 × 3 ×
2 × 1 = 120.

Factorial Calculation

22

■ A classic example of recursion is
calculating the factorial of a number.

■ The factorial of a non-negative integer n
is denoted as n! and is defined as the
product of all positive integers less than
or equal to n.

■ For example, 5! (read as "5 factorial") is
calculated as 5 × 4 × 3 × 2 × 1 = 120.

Function Prototype

■ Program must include either prototype or full function definition before any
call to the function, otherwise a compiler error occurs

■ When using prototypes, function definitions can be placed in any order in
the source file.

■ function prototype is similar to the heading of the function except in the
parameters list we show types only and we put at the end of the
prototype.

■ By having a function prototype, the compiler can ensure that the function
is called correctly, with the appropriate parameters and types, and that the
function returns a value of the correct type.

■ In this course we will define the functions before calling them, so we do
not need prototype.

23

Function Prototype

24

Function without Prototype

25

The function (add) is coming after main function and it hasn’t defined as a function
prototype

Function without Prototype

26

The function (add) is coming before main function and it is correct and doesn’t need a
function prototype

Pass by Value

■ Pass by value: when argument is passed to a function, a copy of its value is
placed in the parameter

■ Function cannot access the original argument

■ Changes to the parameter in the function do not affect the value of the

argument in the calling function

27

Pass by Value

28

Output
0 1.5

1.5 0

0 10

0 1.5

The return Statement
■ Used to end execution of a function

■ Can be placed anywhere in a function

– Any statements that follow the return statement will not be
executed

■ Can be used to prevent abnormal termination of program

■ Without a return statement, the function ends at its last }

29

Functions that don't return a value use
void as the return type.

30

Returning a Value From a Function
■ return statement can be used to return a value from the function to

the module that made the function call

■ Prototype and definition must indicate data type of return value (not
void)

■ Calling function should use return value, e.g.,

– assign it to a variable
– send it to cout
– use it in an arithmetic computation
– use it in a relational expression

31

Returning a Value From a Function
■ Calling function should use return value, e.g.,

– assign it to a variable
– send it to cout
– use it in an arithmetic computation
– use it in a relational expression

32

Returning a Value From a Function
■ Calling function should use return value, e.g.,

– assign it to a variable
– send it to cout
– use it in an arithmetic computation
– use it in a relational expression

33

Returning a Value From a Function
■ Calling function should use return value, e.g.,

– assign it to a variable
– send it to cout
– use it in an arithmetic computation
– use it in a relational expression

34

Returning a Value From a Function
■ Calling function should use return value, e.g.,

– assign it to a variable
– send it to cout
– use it in an arithmetic computation
– use it in a relational expression

35

Returning a Value – the return Statement

■ Format: return expression;

■ expression may be a variable, a literal value, or an expression.
■ expression should be of the same data type as the declared

return type of the function (will be converted if not)

36

Using return

37

Same result

A function with Boolean return

38
Same result

Function of Boolean type

It can be written like this too

39

All the same

40

Recursion

41

■ Recursion is when a function calls itself.

■ It's useful for solving problems that can be divided into smaller,
similar sub-problems.

■ Having the right initial conditions is vital to avoid never-ending
loops in your code.

■ Recursion must have a base case, a condition that determines
when the recursion should stop. Without a base case, recursion
would lead to infinite calls.

Recursion - Factorial Calculation

42

■ If n is 0, the factorial is 1 (0! = 1). This is the simplest case.

■ If n is greater than 0, the factorial of n can be calculated as n times
the factorial of (n - 1).

■ Recursion is used in various algorithms and data structures, such
as tree traversal, searching, and sorting.

■ it simplifies the solution for problems that have a self-similar
structure.

Recursion - Factorial Calculation

43

Recursion - Sum Function

44

Recursion - Sum Function

45

Recursion - Fibonacci

46

■ Fibonacci (fee·buh·naa·chee): The Fibonacci sequence is a
series of numbers where each number is the sum of the two
preceding ones. The sequence typically starts with 0 and 1.

■ The sequence typically starts with the numbers 0 and 1, and it
continues infinitely in both directions.

■ Here are the first few numbers in the Fibonacci sequence:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

Recursion - Fibonacci

47

