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✓ Introduction to functions

✓ Define function

✓ Call function

✓ Function with parameters


✓ Function Prototype

✓ Pass by Value

✓ The return Statement

Overview
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Textbook Source

Tony Gaddis, Starting Out with C++: From Control Structures through Objects, 8th Edition 
✓ Chapter 8 (from page 305 to 363)
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Modular Programming
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■ Modular programming: breaking a program up into smaller units

■ Function: a collection of statements to perform a specific task

■ Advantages for modular programming 


– Simplifies the process of writing programs 
– Improves debugging of programs



Modular Programming
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Function Concept
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Output



Function Concept
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Function Definition

■ Definition includes 

name: name of the function.  Function names follow same rules as 

variable names 
parameter list: variables that hold the values passed to the function 
body: statements that perform the function’s task 
return type: data type of the value the function returns to the part of the 

program that called it
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Define and Call Function in C++
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Define and Call Function with parameters
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Function Type

Function parameters

Call function



Calling a Function
■ main is automatically called when the program starts 

■ main can call any number of functions

■ Functions can call other functions
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Function called inside loop

Output
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Function Procedure
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Functions inside each other

Output
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Cube Function, using Parameters

Parameter
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Simple Sum Function
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Sum Function
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Sum Function
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Factorial Calculation
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■ A classic example of recursion is calculating the factorial of a 
number. 

■ The factorial of a non-negative integer n is denoted as n! and is 
defined as the product of all positive integers less than or equal to 
n. 

■ For example, 5! (read as "5 factorial") is calculated as 5 × 4 × 3 × 
2 × 1 = 120.



Factorial Calculation
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■ A classic example of recursion is 
calculating the factorial of a number. 

■ The factorial of a non-negative integer n 
is denoted as n! and is defined as the 
product of all positive integers less than 
or equal to n. 

■ For example, 5! (read as "5 factorial") is 
calculated as 5 × 4 × 3 × 2 × 1 = 120.



Function Prototype

■ Program must include either prototype or full function definition before any 
call to the function, otherwise a compiler error occurs


■ When using prototypes, function definitions can be placed in any order in 
the source file.  


■ function prototype  is similar to the heading of the function except in the 
parameters list we show types only and we put at the end of the 
prototype.


■ By having a function prototype, the compiler can ensure that the function 
is called correctly, with the appropriate parameters and types, and that the 
function returns a value of the correct type.


■ In this course we will define the functions before calling them, so we do 
not need prototype.
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Function Prototype
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Function without Prototype
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The function (add) is coming after main function and it hasn’t defined as a function 
prototype



Function without Prototype
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The function (add) is coming before main function and it is correct and doesn’t need a 
function prototype



Pass by Value

■ Pass by value: when argument is passed to a function, a copy of its value is 
placed in the parameter


■ Function cannot access the original argument

■ Changes to the parameter in the function do not affect the value of the 

argument in the calling function
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Pass by Value
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Output 
0      1.5

1.5    0

0      10

0     1.5



The return Statement
■ Used to end execution of a function

■ Can be placed anywhere in a function


– Any statements that follow the return statement will not be 
executed 

■ Can be used to prevent abnormal termination of program 

■ Without a return statement, the function ends at its last }
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Functions that don't return a value use 
void as the return type.
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Returning a Value From a Function
■ return statement can be used to return a value from the function to 

the module that made the function call

■ Prototype and definition must indicate data type of return value (not 
void)


■ Calling function should use return value, e.g., 

– assign it to a variable 
– send it to cout 
– use it in an arithmetic computation 
– use it in a relational expression
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Returning a Value From a Function
■ Calling function should use return value, e.g., 


– assign it to a variable 
– send it to cout 
– use it in an arithmetic computation 
– use it in a relational expression
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Returning a Value From a Function
■ Calling function should use return value, e.g., 
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Returning a Value From a Function
■ Calling function should use return value, e.g., 


– assign it to a variable 
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– use it in an arithmetic computation 
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Returning a Value From a Function
■ Calling function should use return value, e.g., 


– assign it to a variable 
– send it to cout 
– use it in an arithmetic computation 
– use it in a relational expression
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Returning a Value – the return Statement

■ Format:  return expression;

■ expression may be a variable, a literal value, or an expression. 
■ expression should be of the same data type as the declared 

return type of the function (will be converted if not)
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Using return 
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Same result



A function with Boolean return
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Same result



Function of Boolean type

It can be written like this too
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All the same
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Recursion
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■ Recursion is when a function calls itself. 

■ It's useful for solving problems that can be divided into smaller, 
similar sub-problems. 

■ Having the right initial conditions is vital to avoid never-ending 
loops in your code. 

■ Recursion must have a base case, a condition that determines 
when the recursion should stop. Without a base case, recursion 
would lead to infinite calls.



Recursion - Factorial Calculation
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■ If n is 0, the factorial is 1 (0! = 1). This is the simplest case. 

■ If n is greater than 0, the factorial of n can be calculated as n times 
the factorial of (n - 1). 

■ Recursion is used in various algorithms and data structures, such 
as tree traversal, searching, and sorting. 

■ it simplifies the solution for problems that have a self-similar 
structure.



Recursion - Factorial Calculation
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Recursion - Sum Function
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Recursion - Sum Function
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Recursion - Fibonacci
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■ Fibonacci (fee·buh·naa·chee):  The Fibonacci sequence is a 
series of numbers where each number is the sum of the two 
preceding ones. The sequence typically starts with 0 and 1. 

■ The sequence typically starts with the numbers 0 and 1, and it 
continues infinitely in both directions.  

■ Here are the first few numbers in the Fibonacci sequence:  

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...



Recursion - Fibonacci
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