
Tishk International University
Science Faculty
IT Department

Global variables - Pointers

Programming II - IT-118

1st Grade - Fall Semester
Lecture #3

Instructor: Hemin Ibrahim
Email: hemin.ibrahim@tiu.edu.iq

✓ Local & Global variables

✓ Introduction to Pointer

✓ Pointers and arrays

✓ Pointers and functions

Overview

Textbook Source

Tony Gaddis, Starting Out with C++: From Control Structures
through Objects, 8th Edition
✓ Chapter 8 (from page 305 to 363)

Local and Global Variables

4

Local and Global Variable Names

■ Avoid using same names for Local and Global variables

■ In case by mistake, a function contains a local variable that has the same

name as a global variable, the global variable is unavailable from within
the function.

5

Local Variable

Output

Local Variable
local variables do not retain

their values between function
calls

Output

Static local variable

• A static local variable in C++ is only initialized once

• Declaring a local variable as static means it will remember
it’s last value (it’s not destroyed and recreated each time it’s
scope is entered).

Static local variable

Output

Global Variable

Output

Shadowing or overwriting

Output

Default Parameters

Output

Overloading Function
Two or more functions may have the
same name, as long as their parameter
lists are different.

Output

Overloading Function

❑ How does the compiler know which version of
“square() ” to call?
• It looks at the arguments passed in each case.

• then It looks to find the right version of square()
that match the correct argument.

Overloading Function

Pointer

Pointer
• A pointer is a variable that holds the memory address of another variable of same

type.

• OR

• A pointer in C++, is a data type that holds the memory address of another variable.

• Pointers allow you to manipulate and access memory locations, which is useful for

tasks like passing variables by reference and working with data structures.

• Pointers provide the right access to data by accessing to memory access, rather

than copying data between variables.

Address in C++
• To understand C++ pointer, we must understand how computers store data.

• When the variable is created in C++, it is assigned a space in computer memory.

The value of this variable is stored in the assigned location.

• To know the location in the computer memory, C++ provides the & (reference)

operator. This operator return the address that this variable stored.

Declaring Pointer Variables
❑Pointers declared like other types

• Add "*" before variable name
• Produces "pointer to" that type

❑"*" must be before each variable

• int *ptr;
• ptr holds pointers to int variables
 (i.e. ptr is a pointer to an integer)

Memory address
• In a computer system, memory address is a unique

identifier that refers to a specific location in the

system's memory such as RAM or hard drive. Each

memory address represents a unique location in the

memory hierarchy.

int x = 5;
cout<<&x<<endl;
int p=&x;
int *p=&x;
cout<<p<<endl;

5

0x7ff7b1d80598

0x7ff7b1d80590

0x7ff7bde93580

memory address

Output: 0x7ff7b1d80590 0x7ff7bde94503

x

p0x7ff7b1d80590

Declaring Pointer Variables

• Sets pointer variable y to "point to" int variable x

• Reference operator, & (ampersand): Determines "address of"
variable

• Read like
y equals address of x
Or "y points to x”

Same

Declaring Pointer Variables - example

x= 7
&x= 0x7ff7b9fe4598

y= 0x7ff7b9fe4598
*y= 7

&y= 0x7ff7b9fe4590

Output

Declaring Pointer Variables - example

Reference operator (&) and Dereference Operator (*)

• & (ampersand) operator return the address of the variable.

• * operator return the value that stored in the memory.

• For example: If a number variable is stored in the memory
address 0x7ff7b3a74598 and it contains a value 7.

• The reference (&) operator gives the value 0x7ff7b3a74598.
While the dereference operator (*) gives the value 7.

Reference operator (&) and Dereference Operator (*)
• & operator return the address of the variable.

• * operator return the value that stored in the memory.

• For example: If a number variable is stored in the memory address 0x7ff7b3a74598 and it contains a value 7.

• The reference (&) operator gives the value 0x7ff7b3a74598. While the dereference operator (*) gives the value

7.

Output

Pointers and arrays

• Pointers are more efficient in handling array.
• Pointers provide an alternative way to access array’s elements.

Output

Pointer arithmetic

• Integer math operations can be used with pointers.
• If you increment a pointer, it will be increased by the size of whatever

it points to

int a[5];

a[0] a[1] a[2] a[3] a[4]

int *ptr = a;
*(ptr+2)

*(ptr+4)

Pointer arithmetic - Example

Output:
*ptr= 1

*ptr++= 3

Pointer arithmetic - Example

Output

Pointers and functions

• Pointers variable can pass as a function argument and function can
return pointer.

• There are two approaches to passing argument to a function:
• Call by value (Previous lecture)
• Call by reference

Pass by Reference
■ Mechanism that allows a function to work with the original variable from the

function call, not a copy of the value

■ Allows the function to modify values stored in the calling environment

■ Provides a way for the function to ‘return’ more than 1 value

31

Pass by Reference
• Pass-by-Reference: Pointers can be used to pass variables to functions by

reference, which means that the function can modify the variable's value directly in

memory. This can be useful for functions that need to modify the input variables.

x before calling function = 8

x after calling function = 11

Call by value Call by reference

They are the same

Swap Function with Reference Variables

35

Output

Reference Variable Notes
■ Each reference parameter must contain &

■ Argument passed to reference parameter

must be a variable (cannot be an

expression or constant).

36

WRONG

OK

Returning Multiple Values using Pointers

37

Output

Exercise #1

38

find the maximum numbers in the following array, using
function.

myArr[]={8, 2, 5, 1, 7, 4, 9, 3};

Exercise #1

39

find the maximum numbers
in the following array, using
function.

myArr[]={8, 2, 5, 1, 7, 4, 9, 3};

Exercise #2

40

find the minimum and maximum numbers in the following
array, using function.

myArr[]={8, 2, 5, 1, 7, 4, 9, 3};

Exercise #2

41

find the minimum and maximum numbers in the following
array, using pointer and function.

myArr[]={8, 2, 5, 1, 7, 4, 9, 3};

Exercise #2

42

find the minimum
and maximum
numbers in the
following array,
using pointer and
function.

myArr[]={8, 2, 5,
1, 7, 4, 9, 3};

Output

