Tishk International University
Science Faculty
IT Department

Programming Il - IT-118

Vectors

1st Grade - Fall Semester
Lecture #4

Instructor: Hemin lbrahim
Email: hemin.ibrahim@tiu.edu.iq

Overview

Intro to vector

Defining a new vector
Vectors member functions
Seqguence Containers: vector
Deque

- e

Introduction to Vector

= |n C++, arrays are used to store sequential data which are static in
nature. Generally, arrays are non-dynamic/static, that is to say,
they are of fixed size, however, C++ also allows us to store data in
dynamic arrays which are known as vectors in C++.

= \/ectors can resize itself automatically when an element is inserted
or deleted depending on the need of the task to be executed. It is
not same in an array where only a given number of values can be
stored under a single variable name.

= \ector is a dynamic array container provided by the Standard
Template Library (STL) in C++.

Defining a new vector

Syntax: vector< >
For example :
vector<int> - vector of integers.

Mool rs s inne et apa o b na o
veolorant > e ctor o poihters it anicge s

Defining a new vector

JdBasic constructlo/ Vector name
Jdvector<T> A

N\

Base element type

JExample
dvector<int> A; // 0 ints
Jdvector<float> B; // 0 floats

Defining a new vector

#include <vector>
» Declaration: vector<type> vectorName(size);

Example: vector<int> a(3);

Example: vector<int> b; // Zero size
Example: vector<int> A(5), /[l 5 ints

Example: vector<float> B(10); // 10 floats

= \/ector can be indexed as an array, using |]

Defining a new vector

#include <vector>
= Declaration: vector<type> vectorName(size,Value);

Example: vector<int> a(3,5); // 3 5s
Example: vector<float> b(20,1.5); // 20 1.5s

#include <iostream>

using namespace std;

#include<vector>

~int main() {

vector<int> V(3,5);
cout<<V[0]<<endl;
cout<<V[1]<<endl;
cout<<V[2]<<endl;

return 0;

Defining a new vector

In the bellow example, a blank vector is being created. Vector is a dynamic array
and, doesn’t needs size declaration.

#include <iostream>

#include <vector> 4_

using namespace std;

int main ()

{
vector<int> my vector;
vector<int> A = {1,2,6,-9,5};
vector<int> C {1,2,06,-9,5};

Why Vector?!

= Provides an alternative to the built in array.

= A vector is self grown.

= Use it instead of the built in array!

= |tis one of the most commonly used data structures in C++.

= \ector provides a dynamic, resizable array-like container with
several built-in functionalities.

Vectors member functions
v{7,3,4,0,9,-4,-3,5,2,11}

ev.size(); // return the number of elements in v , which is 10

e v.push back(14); //appends 14 to the end of v{7,3,4,0,9,-4,-3,5,2,11,14};
ev.at(4); // retrieves the element at index 4, which is 9

e v.resize (15) // change size of v to 15

« v.pop back() // remove the last element in v {7,3,4,0,9,-4,-3,5,2};
soxrcfvontl) ot return the first element in v which s

ev.clear(); // delete all the element in v

ev.empty(); // return 1 if v is empty; else return 0;

ev.back(); // return the last element in v, which is 11

v beginl) s/ thaboginning o thevector which g7

ev.erase(); // erases a specific element

*v.capacity() ;

Vectors member functions: Size()

Returns the number of elements in the vector.

main.cpp

#include <iostream>
#include <vectors:
using namespace std;

int main() {
vector<int> P={1,4,0,8,6,-4};
cout<<P.size()<<endl;

1
2
3
il
5
6
7
8

Vectors size vs array size

#include <iostream>

#include <vector>

using namespace std;

~1int main() {

int A[3]={1,4,6},; // Array
vector<int> V = {1,5,5,2}; // Vector
cout<<"Array Size "<<sizeof(A)/sizeof(A[0])<<endl,;
cout<<"Vector Size "<<V.size()<<endl;

return 0;

Example of size()

main.cpp

#include <iostream:
#include <vector>
using namespace std;

int main() {
vector<int> P={1,4,0,8,6,-4};
for(int 1=0;i<P.size();1i++){
cout<<P[i]<<"\t";

1
2
3
il
5
6
7
8
s
0

—_—

Vectors member functions: Adding elements

push_back(element): Inserts an element with value x at the end of the
controlled sequence.

main.cpp Output

#include <iostream:
#include <vector: Adding 2 to an empty vector A
using namespace std; 2
Adding 2 to vecote A
int main() { 2 3
vector<int> A;
A.push_back(2);
cout<<"Adding 2 to an empty vector A"<<endl;
for(int i=0;i<A.size();i++){
cout<<A[i]<<"\t";
}
cout<<endl;
cout<<"Adding 2 to vecote A"<<endl;
A.push_back(3);
for(int i=0;i<A.size();i++){
cout<<A[i]<<"\t";

by

Adding numbers by For loop

#include <iostream>

Use a for loop to iteratively input values using namespace std;

; #include<vector>
Into the vector. . .
1nt main() {

vector<int> V;
int x;

* for(int 1=0;1<5;1++){
cout<<"Input number"<<endl;
cin>>x;

V.push_back(x);

- for(int 1=0;1i<5;i++){
cout<<V[1i]<<endl;

return 0O;

Vectors member functions: at()

at(index): retrieves the element at index 4, which is 9

main.cpp

#include <iostream>
#include <vector>
using namespace std;

int main() {
vector<int> v={7,3,4,0,9,-4,-3,5,2,
cout<<v.at(4);

1
2
3
4
5
6
7
8

Same as v[4]

Vectors member functions: resize()

resize(newsSize): Resizing a vector to a new size.

main.cpp Output

#include <iostream
#include <vectors: 73409 -4-3521100
using namespace std;

int main() {
vector<int> v={7,3,4,0,9,-4,-3,5,2,11};
v.resize(12);
for(int i=0;i<v.size();i++){
cout<<v[i]<<" ";

}

1
2
3
il
)
6
7
8
)
0
1

— —

Vectors member functions: pop back()

v.pop_back(): Remove the last element of the vector

main.cpp Output

#include <iostream:
#include <vector> 73409 -4 -352
using namespace std;

int main() {
vector<int> v={7,3,4,0,9,-4,-3,5,2,
v.pop_back();
for(int i=0;i<v.size();i++){
cout<<v[i]<<" ";

}

1
2
3
il
)
6
7
8
9
0
1

— —

Vectors member functions: front()

v.front(): return the first element in v, which is 7

main.cpp

#include <iostream>
#include <vectors:
using namespace std;

int main() {
vector<int> v={7,3,4,0,9,-4,-3,5,2,
cout<<v.front();

1
2
3
il
)
6
7
8

Vectors member functions: clear() & empty()

v.clear(): Remove all elements inside the vector
v.empty(): Check the empty vector, return 1 if vector is empty; else return O;

main.cpp

#include <iostream>
#include <vector:
using namespace std;

int main() {
vector<int> v={7,3,4,0,9,-4,-3,5,2,
cout<<v.empty()<<endl;
v.clear();
cout<<v.empty()<<endl;

1
2
3
4
5
6
7
8
9
0

—

Vectors member functions: back()

v.back(): Return the last element in the vector

main.cpp

#lnClUde = 7'7 sStream>
#include <vector>
using namespace std;

int main() {
vector<int> v={7,3,4,0,9,-4,-3,5,2,11};
cout<<v.back()<<endl;

1
2
3
4
)
6
7
8
9

Vectors member functions: begin()

v.begin(): It returns an iterator pointing to the first element of the vector.

main.cpp

#include <iostream:
#include <vector:
using namespace std;

int main() {
vector<int> v={7,3,4,0,9,-4,-3,5,2,11};
auto d = v.begin();
cout<<*d<<endl;

1
2
3
4
5
6
7
8
9
0

—

Vectors member functions: erase()

v.erase(): It is used to remove elements from a vector at a specified
position or within a range.

main.cpp Output

#include <iostream>
#include <vector: 3409 -4-35211
using namespace std;

int main() {
vector<int> v={7,3,4,0,9,-4,-3,5,2,
v.erase(v.begin());
for(int i=0;i<v.size();i++){
cout<<v[i]<<" ";

1
2
3
4
5
6
7
8

iy

Vectors member functions: erase()

Remove the range between index 2 until 4

main.cpp Output

#include <iostream>

#include <vectors> 739 -4 -35211
using namespace std;

int main() {
vector<int> v={7,3,4,0,9,-4,-3,5,2,
v.erase(v.begin()+2, v.begin()+4);
for(int 1i=0;i<v.size();i++){
cout<<v[i]<<" ";

}

1
2
3
4
5
6
7
8
9
0
1

— —

Vectors member functions: capacity()

When you add an element to a vector, the size of the vector increases by 1.
However, the capacity of the vector does not necessarily increase. The capacity of
the vector will only increase if the current capacity is not enough to store the new
element. In this case, the capacity of the vector does not increase because there is
still enough space to store the new element.

main.cpp Output

#include ostream
#include <vector: The size of the vector is: 3
using namespace std; The capacity of the vector is: 4
int main() {

vector<int> v;

v.push_back(2);

v.push_back(3);

v.push_back(4);

1
2
3
il
)
6
7
8

cout << "The size of the vector is: " << v.size() << endl;
cout << "The capacity of the vector is: " << v.capacity() << endl;

return 0;

STL Algorithms with Vectors:

The STL (Standard Template Library) provides a set of algorithms that work
seamlessly with vectors such as sort(), find(), and accumulate().

main.cpp Output

#include <iostream>

#include <vector> -4 -30234579 11

#include <algorithm> \
using namespace std,

int main() {
vector<int> v={7,3,4,0,9,-4,-3
sort(v.begin(), v.end());
for(int i=0;i<v.size();i++){
cout<<v[i]<<" ";

}

STL Algorithms with Vectors:

The STL provides a set of algorithms that work seamlessly with vectors such as
sort(), find(), and accumulate().

#include <iostream:
#include <vector>
#include <algorithm>
using namespace std;

int main() {
vector<int> v={7 . 9,-4,-3,5,2,11};
int x = find(v. begln(), . , 50)- v.begin();

if (x !'= v.size()) {
cout << "The number 50 was found at index " << x << endl;
else {

cout << "The number 50 was not found in the vector" << endl;

STL Algorithms with Vectors:

accumulate(): It is used to perform a summation or accumulation operation on a
range of elements

sum variable starting from the initial value of O.

main.cpp

#include <vector

#include <numeric:
using namespace std;

int main() {
vector<int> v={7,3,4,0,9,-4,-3,5,2,11};
int x = accumulate(v.begin(), v.end(),0);
cout<<x;

1
2
3
4
)
6
7
8
9
0

—

Vector and functions

= Passing vectors to functions enhances code organization, readability,
and reusabillity.

= |t helps for:

= Modularity: It breaks down the program into smaller, manageable
tasks. Each function can focus on a specific task related to the
vector.

= Reusability: Once the function has been written to work with a
vector, it can be reused in different parts of the program or even in
different programs.

= Readability: By using vector-related operations in functions, the
code can be easier to understand and maintain.

#include <iostream>

Vector and functions using namespace std;
#include<vector>
= By using function, write a C++
program that finds the largest
number inside a vector.

int veclLarge(vector<int> A){
int largest = A[0];
for (int 1i=1;i<A.size();1i++){
if(A[i]>1largest){
largest = A[1];

}

return largest;
int main() {
vector<int> V = {1,-4,16,7,-9};

cout<<veclLarge(V)<<endl;

return O;

#include <iostream>
- #include <vector>
Vector and functions ssing namespace std:
vector<int> findEven(vector<int> V) {
vector<int> evenNumbers;

= By using function, write a C++ T NI
program that finds the even if (V[i] % 2 == 0) { |
numbers inside a vector and return | cventumerspushback(D:
the even numbers inside a new }

return evenNumbers;

vector, then print it. }

int main() {
vector<int> A = {3, 8, 5, 12, 7, 10};
vector<int> evens = findEven(A);

cout << "Even numbers: ";
for (int 1=0;i<evens.size();i++) {
cout << evens[i] << " "

}

cout << endl;

return 0;

Vector and functions

= By using function, write a C++
program that finds the average of
the vector elements.

Sequence Containers: vector

* The implementation of a vector is based on arrays
 Vectors allow direct access to any element via indexes

* Insertion at the end is normally efficient.
— The vector simply grows

* Insertion and deletion in the middle is expensive
— An entire portion of the vector needs to be moved

33

Sequence Containers

 STL provides three sequence containers
- vector: based on arrays
- deque (double-ended queue): based on arrays
- list: based on linked lists

34

Deque

- Double Ended Queue
- Functionality similar to vectors,

- but with efficient insertion and deletion of elements also at the
beginning of the sequence, and not only at its end

- Sequence

- Elements in sequence containers are ordered in a strict linear
sequence. Individual elements are accessed by their position in
this sequence.

Sequence Containers: deque

« deque stands for double-ended queue
» deque combines the benefits of vector and list

* It provides indexed access using indexes (which is not possible using lists)

* It also provides efficient insertion and deletion in the front (which is not
efficient using vectors) and the end

36

deque (cont.)

 Additional storage for a deque is allocated using blocks of memory
- that are maintained as an array of pointers to those blocks

« Same basic functions as vector, in addition to that

- deque supports push front and pop front for insertion and
deletion at beginning of deque

37

Deque Operations

main.cpp

1 #include <iostream>

2 #include <deque>

3 using namespace std,; 2 3
4 - int main() {

) deque<int> D;

6

7 D.push_back(1);

8 D.push_back(2);

9 D.push_back(3);

10

11 for (int i = 0; i < D.size(); i++) {
12 cout << D[i] << " ";

13 }

14 cout << endl;

15

16 D.pop_front();

17

18 for (int i = 0; i < D.size(); i++) {
19 cout << D[i] << " ",
20 }
21 cout << endl;
22 return 0;

N
w
e

