
Tishk International University

Science Faculty

IT Department

Vectors

Programming II - IT-118

1st Grade - Fall Semester
Lecture #4

Instructor: Hemin Ibrahim

Email: hemin.ibrahim@tiu.edu.iq

✓ Intro to vector

✓ Defining a new vector

✓ Vectors member functions

✓ Sequence Containers: vector

✓ Deque

Overview

■ In C++, arrays are used to store sequential data which are static in
nature. Generally, arrays are non-dynamic/static, that is to say,
they are of fixed size, however, C++ also allows us to store data in
dynamic arrays which are known as vectors in C++.

■ Vectors can resize itself automatically when an element is inserted
or deleted depending on the need of the task to be executed. It is
not same in an array where only a given number of values can be
stored under a single variable name.

■ Vector is a dynamic array container provided by the Standard
Template Library (STL) in C++.

Introduction to Vector

Syntax: vector<of what> 

For example :

vector<int> - vector of integers.

vector<string> - vector of strings.

vector<int * > - vector of pointers to integers.

Defining a new vector

Defining a new vector

❑Basic construction

❑vector<T> A;

❑Example

❑vector<int> A;	 // 0 ints

❑vector<float> B;	 // 0 floats

Base element type

Vector name

 #include <vector>

■ Declaration: vector<type> vectorName(size);

Example: vector<int> a(3);

Example: vector<int> b; // Zero size

Example: vector<int> A(5); // 5 ints

Example: vector<float> B(10); // 10 floats

■ Vector can be indexed as an array, using []

Defining a new vector

 #include <vector>

■ Declaration: vector<type> vectorName(size,Value);

Example: vector<int> a(3,5); // 3 5s

Example: vector<float> b(20,1.5); // 20 1.5s

Defining a new vector

In the bellow example, a blank vector is being created. Vector is a dynamic array
and, doesn’t needs size declaration.

#include <iostream>

#include <vector>

using namespace std;

int main()

{

	 vector<int> my_vector;

vector<int> A = {1,2,6,-9,5};

vector<int> C {1,2,6,-9,5};

}

Defining a new vector

Why Vector?!
■ Provides an alternative to the built in array.

■ A vector is self grown.

■ Use it instead of the built in array!

■ It is one of the most commonly used data structures in C++.

■ Vector provides a dynamic, resizable array-like container with

several built-in functionalities.

Vectors member functions
v{7,3,4,0,9,-4,-3,5,2,11}

• v.size(); // return the number of elements in v , which is 10

• v.push_back(14); //appends 14 to the end of v{7,3,4,0,9,-4,-3,5,2,11,14};

• v.at(4); // retrieves the element at index 4, which is 9

• v.resize(15) // change size of v to 15

• v.pop_back() // remove the last element in v {7,3,4,0,9,-4,-3,5,2};

• v.front(); // return the first element in v, which is 7

• v.clear(); // delete all the element in v

• v.empty(); // return 1 if v is empty; else return 0;

• v.back(); // return the last element in v, which is 11

• v.begin(); //the beginning of the vector, which is 7

• v.erase(); // erases a specific element

• v.capacity();// return the number of element that vector can hold before it
will need to allocate more space

Vectors member functions: Size()
Returns the number of elements in the vector.

Vectors size vs array size

Example of size()

Vectors member functions: Adding elements
push_back(element): Inserts an element with value x at the end of the
controlled sequence.

Adding numbers by For loop
Use a for loop to iteratively input values
into the vector.

Vectors member functions: at()
at(index): retrieves the element at index 4, which is 9

Same as v[4]

Vectors member functions: resize()
resize(newSize): Resizing a vector to a new size.

Vectors member functions: pop_back()
v.pop_back(): Remove the last element of the vector

Vectors member functions: front()
v.front(): return the first element in v, which is 7

Vectors member functions: clear() & empty()
v.clear(): Remove all elements inside the vector

v.empty(): Check the empty vector, return 1 if vector is empty; else return 0;

Vectors member functions: back()
v.back(): Return the last element in the vector

Vectors member functions: begin()
v.begin(): It returns an iterator pointing to the first element of the vector.

Vectors member functions: erase()
v.erase(): It is used to remove elements from a vector at a specified
position or within a range.

Vectors member functions: erase()
Remove the range between index 2 until 4

Vectors member functions: capacity()
When you add an element to a vector, the size of the vector increases by 1.
However, the capacity of the vector does not necessarily increase. The capacity of
the vector will only increase if the current capacity is not enough to store the new
element. In this case, the capacity of the vector does not increase because there is
still enough space to store the new element.

STL Algorithms with Vectors:
The STL (Standard Template Library) provides a set of algorithms that work
seamlessly with vectors such as sort(), find(), and accumulate().

STL Algorithms with Vectors:
The STL provides a set of algorithms that work seamlessly with vectors such as
sort(), find(), and accumulate().

STL Algorithms with Vectors:
accumulate(): It is used to perform a summation or accumulation operation on a
range of elements

sum variable starting from the initial value of 0.

Vector and functions
■ Passing vectors to functions enhances code organization, readability,

and reusability.

■ It helps for:

■ Modularity: It breaks down the program into smaller, manageable
tasks. Each function can focus on a specific task related to the
vector.

■ Reusability: Once the function has been written to work with a
vector, it can be reused in different parts of the program or even in
different programs.

■ Readability: By using vector-related operations in functions, the
code can be easier to understand and maintain.

Vector and functions
■ By using function, write a C++

program that finds the largest
number inside a vector.

Vector and functions
■ By using function, write a C++

program that finds the even
numbers inside a vector and return
the even numbers inside a new
vector, then print it.

Vector and functions
■ By using function, write a C++

program that finds the average of
the vector elements.

33

Sequence Containers: vector

• The implementation of a vector is based on arrays

• Vectors allow direct access to any element via indexes

• Insertion at the end is normally efficient.

– The vector simply grows

• Insertion and deletion in the middle is expensive

– An entire portion of the vector needs to be moved

34

Sequence Containers

• STL provides three sequence containers

-vector: based on arrays

-deque (double-ended queue): based on arrays

- list: based on linked lists

Deque
● Double Ended Queue

● Functionality similar to vectors,

● but with efficient insertion and deletion of elements also at the

beginning of the sequence, and not only at its end

● Sequence

− Elements in sequence containers are ordered in a strict linear
sequence. Individual elements are accessed by their position in
this sequence.

36

Sequence Containers: deque

• deque stands for double-ended queue

• deque combines the benefits of vector and list

• It provides indexed access using indexes (which is not possible using lists)

• It also provides efficient insertion and deletion in the front (which is not
efficient using vectors) and the end

37

deque (cont.)

• Additional storage for a deque is allocated using blocks of memory

- that are maintained as an array of pointers to those blocks

• Same basic functions as vector, in addition to that

- deque supports push_front and pop_front for insertion and

deletion at beginning of deque

Deque Operations

