Lecture 4

Rational Operations

Control Structures

If Statements

The IF Block Statement
Nested IF

Flags

Logical Operators
Switch

Objectives

Learn to use different control structures, like if statements, nested if, flags, logical
operators, and switch statements, according to the complexity of the problem.
Apply rational operations and control structures to solve problems logically.
Develop versatility in choosing and implementing control flow structures such as if
statements, nested if, flags, logical operators, and switch statements.

Gain proficiency in using conditional statements for effective decision-making,

handling various conditions and scenarios in programming

Programmi

When | wrote this code,
only God & | understood
what it did.

Now.....
only God knows.

Relational Operators

\'\/7
e Relational operators compare numeric and char values to check if one is greater

than, less than, equal to, or not equal to another.

e Computers excel at both calculations and value comparisons.

e Comparisons are essential for tasks like analyzing sales figures, calculating profit
and loss, checking numerical ranges, and validating user input.

Relational Operators Meaning

> Greater than

< Less than

>= Greater than or equal to
<= Less than or equal to

== Equal to

1= Not equal to

Expression What the Expression Means

X >y Is x greater than y?

X <y Is x less than y?

X >=y Is x greater than or equal to y?
X <=y Is x less than or equal to y?

X ==y Is x equal to y?

x I=y Is x not equal to y?

Control Structures
‘-V’

e We know that program is executed sequentially, unless we give different

instructions.
e for the program to not execute sequentially, we need to use a control structure.

* Control Structures provide two basic functions: selection and repetition

/! A program to calculate the area of a rectangle

(looping) o

#include <{iostream)

Stepz‘ using namespace std;
A int main()
‘ Step 3 {
) double length, width, area;

Step 4
[] ‘ \cout <{{ "Enter the length of the rectangle: ";
cin >> length;
‘S’(epS cout <K "Enter the width of the rectangle: ";

) cin >> width;
Step 6 — P area = length * width;
A cout < "The area is: " <K area <X endl

‘ return 0;
}

Control Structures

e A Selection control structure is used to choose among alternative courses of action.
* There must be some condition that determines whether or not an action occurs.
e C++ has a number of selection control structures:

o if

e if.... else

e switch

Control Stri ke

If statement

\'\/7
e The if statement can cause other statements to execute only under certain

conditions.
* The if selection statement is a single-selection statement
e it selects orignores a single statement (or block of statements) depending on the
condition
e Modifies the order of the statement execution.

Is Condition True™

Process
Statement

STOPRP

If statement - Example

N
In the flowchart, the action “Wear a coat” is performed only when it is cold outside.
If it is not cold outside, the action is skipped. The action is conditionally executed
because it is performed only when a certain condition (cold outside) exists.

We perform mental tests like these every day. Here are some other examples:

« If the caris low on gas, stop at a service station and get gas.

. Ifit’s raining outside, go inside. l

 If you're hungry, get something to eat.

Is it cold
outside?

Wear a coat.

1. You will make people laugh if you are funny.

hypothesis conclusion

7 you are funny then gou will wiake

If statement

Executed sequentially Using control structure

#include <iostream> #include <iostream
using namespace std; using namespace std;
int main() { int main() {

int num1, num2, sum; int number;

cout << "Input first number:

. cout << "Input a number: ";
cin >> numi;

cin >> number;

cout << "Input second number: "; if (number % 2 == 0) {
cin >> num2;
cout << "The number is even." << endl;
} else {
sum = numl + num2;
cout << "Sum = " << sum << endl: cout << "The number is odd." << endl;

0; -
return O; return 0;

If statement - Example
(aes FIRST CONDITIONAL 222228

PRESENT SIMPLE + FUTURE SIMPLE
< If we work hard, we will finish the project on time.

AL
5 B

'CONDITION ((p RESULT
The first conditional is used to express a real or very
probable situation in the future. It refers to things that
will possibly happen in the future if a condition is met.

The first conditional is common when we are talking -

about possible plans, promises, warnings, threats or -
for persuading someone.

 CONDITION | _ RESULT

PRESENTSIMPLE + FUTURE SIMPLE

4 If | go to Italy next week for work, I'll visit the Colosseum.,

< If 1 have time tomorrow, | will help you.
< If you touch that wire, you will get an electric shock.

\

If statement in C++

e Evaluate an expression (condition) and directs program
execution depending on the result of that evaluation.

e |f the expression evaluate as TRUE, statement is executed, if
FALSE, statement is not executed, execution then passed to
the code follows the if statement, that is the
next_statement.

e So, the execution of the statement depends on the result of
expression.

5)
o E
" <

2008

1f (condition)
Statement;

1f (condition){
Statement;

if (condition
() h No semicolon goes here
Statement;
h semicolon goes here

1f (condition){
Statement;

Example #1

Write a C++ program that asks user to input a number, then check the number is positive?

#include <iostream> #include <iostream>
using namespace std; using namespace std;
~int main() { » int main() {
int number; int number;
cout<<"Input a number: "; cout<<"Input a number: ";

in>> ; :
ST UL cin>>number ;

if(number>0){ 4/ P M 4—

cout<<number<<" is positive.";
}M

return 0;

cout<<number<<" is positive.";

return 0;

#include <iostream>
using namespace std;
* int main() {

int number;
cout<<"Input a number: ";
cin>>number;

- if(number>0) {
cout<<number<<" is positive.";

}
v if(number<0) {
cout<<number<<" is negative.";
}
v if(number==0) {
cout<<number<<" is Zero.";
}
return O;

#include <iostream>
using namespace std;
~int main() {

int mark;

cout<<"Input a number: ";
cin>>mark;

if(mark>=60) {

cout<<"Congratulations, you have passed in programming";

return O;

The if Block Statement

If you want an 'if' statement to execute a group of statements, use a compound

statement enclosed in '{' and '}'. It allows you to control the execution of multiple
statements or control structures

if (expression)
{
statement;
statement;
/| Place as many statements here as necessary.

#include <iostream>
using namespace std;
*int main() {

string username = "user123";
‘ if (username == "user123") {
cout << "Welcome, " << username << "I" << endl;
cout << "You have successfully logged in." << endl;
}
return 0;

BEING A PROGRAMMER

My mom said:

"Honey, please go to the market and buy 1 bottle of
milk. If they have eggs, bring 6"

| came back with 6 bottles of milk.

She said: "Why the hell did you buy 6 bottles of
milk?"

| said: "BECAUSE THEY HAD EGGS!!!!"

The if/else Statement
~N

The if/else statement will execute one group of statements if the expression is true,
or another group of statements if the expression is false.

if (expression){
statement or block;
} else {
statement or block;

With an if statement, if the expression is true, specific statements are executed; otherwise, a
different set of statements is executed

Is Condition True?

Statement2 Statement1

The if/else Statement - Example

Write a C++ program to check a given integer is even or odd.

#include <iostream>
using namespace std;

int main() {
int number;

cout << "Enter a number: ";

cin >> number;

if (number % 2 == 0)
cout << number " is even.'"<<endl;
else

cout << number " is odd."<<endl;

return 0;

}

[&] Microsoft Visual Studio Deb...

Enter a number:
7 is odd.

[&5] Microsoft Visual Studio De...

Enter a number:

4 is even.

O

Main |
Integer number

-

Qutput "Enter a number: ™ ...

T

Input number
False True
number%2==0
Y A 2
Qutput number & "is odd.” Output number & " is even.”

Flags and Integer Flags

\'V'I
e A flag is a variable used to signal the existence of a condition in a

program.
e Flags are usually Boolean or integer variables.
e When the flag is set to false, it signifies that the condition does not exist.

e Setting the flag to true indicates the presence of the specified condition.

Flags and Integer Flags - Example 1

#include <iostream>
using namespace std;
int main()
{
int number = 0;
int flag = 0;

cout << "Enter a number: ";
cin >> number;

if (number >= 0){
flag = 1;
}

if (flag 1){

cout "The number is positive or zero." << endl;
} else {

cout "The number is negative." << endl;

}

return 0;

#include <iostream>
using namespace std;
int main() {
int number;
bool even=false;
cout<<"Enter an integer: "“;
cin>>number;
’ if(number%2==0){
even=true;

if(even){

cout<<number<<" is Even."<<endl;
} else {

cout<<number<<" is 0dd."<<endl;

return 0;

Enter an integer: 12

12 1s Even.
|

Enter an integer: 11
11 is 0Odd.

The if/else if statement simplifies testing multiple conditions, often done more

efficiently than using nested if/else statements

if (expression_1)

{

statement

statement
etc.

}

else if (expression_2)

{

statement

statement
etc.

}

Insert as many else 1if clauses as necessary

else

{
statement
statement

etc.

If expression_1 is true these state-
ments are executed, and the rest of the
structure is ignored.

Otherwise, if expression_2 is true these
statements are executed, and the rest of the
structure is ignored.

These statements are executed
if none of the expressions above
are true.

4

4

4

#include <iostream>
using namespace std;
int main() {

int number;
cout<<"Input a number:
cin>>number;

if(number>0) {
cout<<number<<" is

if(number<0) {
cout<<number<<" is

if (number==0) {
cout<<number<<" is

}

return 0;

positive.";

negative.";

Zero.";

#include <iostream>
using namespace std;
int main() {

int number;

cout<<"Input a number: ";

cin>>number;

if(number>0) {
cout<<number<<"

} else if(number<0)
cout<<number<<"

} else {
cout<<number<<"

return 0;

is positive.";
{

is negative.";

is Zero.";

The if/else if Statements - Example

#include <iostream>
using namespace std;
#include <ctime>

int main() {

int testScore; 0 hold a numeric test
cout << "Enter your numeric test score:
cin >> testScore;

if (testScore >= 90)//true

cout << "Your grade is A.\n";

else if (testScore >= 80)

cout << "Your grade is B.\n";
else if (testScore >= 70)

cout << "Your grade is C.\n";
else if (testScore >= 60)

cout << "Your grade is D.\n";
else

cout << "Your grade is F.\n";

return 0;

To test more than one condition, an if statement can be nested inside another if

statement.

False

employed =="Y"
Y \/

Display “You must be
employed to qualify."

True

Display "You must have Display “You qualify for
graduated from college the special interest
in the past two years to rate."

qualify.”

#include <iostream>
using namespace std;
rint main() {
string username,password;
cout<<"Enter your username: ";

cin>>username;
cout<<"Enter your password: "; True
cin>>password;
r if(username=="Admin"){
' if(password=="pass#123"){ Faleo True

cout<<"Logged in successfully."; ‘ Z
Invalid Username
r } else {

cout<<"Invalid password.";

} A4
Logged in
- ah — =

cout<<"Invalid username.";

return 0; I
End

Logical operators connect two or more relational expressions into one or reverse the

logic of an expression.

Operator Meaning Effect

&& AND Connects two expressions into one. Both expressions must be true for
the overall expression to be true.

|| OR Connects two expressions into one. One or both expressions must be
true for the overall expression to be true. It is only necessary for one to
be true, and it does not matter which.

! NOT The ! operator reverses the "truth” of an expression. It makes a true

expression false, and a false expression true.

Logical Operators - Example 1 (&&) au

#include <iostream>
using namespace std; #include <iostream>

©int main() { using namespace std;
string username,password; Cint main() {

string username, password;

cout<<"Enter your username: "; and

cin>>username;

cout<<"Enter your password:

cin>>password;

cout<<"Enter your username: ";
cin>>username;
cout<<"Enter your password: ";
cin>>password;

if(username=="Admin"){
if(password=="pass#123"){
cout<<"Logged in successfully.";

if(username=="Admin" && password=="pass#123"){

' elzzui<<"1nvalid password."; cout<<"Logged in successfully.";
} ' } else {
} else { cout<<"Invalid username or password.";
cout<<"Invalid username."; }
}
return 0;
return 0;

Logical Operators - Example 2 (&&)

Create a C++ program that determines if a person is eligible to vote. The program should check if
the person is 18 years or older and they are a citizen.

#include <iostream>
using namespace std;
int main() {

int age;

char citizenship;

cout << "Enter your age: ";
cin >> age;

cout << "Are you a citizen? (Y/N): ";
cin >> citizenship;

if (age >= 18 && citizenship == 'Y') {
cout << "You are eligible to vote!\n";
} else {
cout << "Sorry, you are not eligible to vote.\n";

by

return 0;

Expression

Value of Expression

true && false
false && true
false && false
true && true

false (0)
false (0)
false (0)

true

(1)

Logical Operators - Example (| |)

Develop a C++ program that determines if a person is eligible for a discount. Check if the person
is a senior citizen (age 60 or above) or a student.

#include <iostream>
using namespace std;
int main() {

int age;

char student;

cout << "Enter your age: "
cin >> age;

cout << "Are you a student? (Y/N): "
cin >> student;

if (age >= 60 || student == 'Y') {
cout << "You are eligible to discount!\n";
} else {
cout << "Sorry, you are not eligible to discount.\n";

}

return 0;

Expression Value of the Expression
true || false true (1)

false || true true (1)

false || false false (0)

true || true

true

(1)

3!

ERBIL 2008

Logical Operators - Example (&& and | |) @

#include <iostream>
using namespace std;
int main()

{

int numberl, number2;

cout << "Enter two numbers:
cin >> numberl >> number2;

if (numberl > @ && number2 > 0) {
cout << "Both numbers are positive." << endl;
else if (numberl > @ || number2 > @) {
cout << "At least one of the numbers is positive." << endl;
else {

cout << "Both numbers are non-positive." << endl;

return 0;

#include <iostream>

using namespace std;

int main() {
int number;
bool even=false;
cout<<"Enter an integer: ";

#include <iostream>

using namespace std;

int main() {
int number;
bool even=true;
cout<<"Enter an integer: ";

cin>>number; cin>>number;
if(number%2==0){ if(number%2!=0){
even=true; even=false;
} }
if(even){ if('even){
cout<<number<<" is Even."<<endl; cout<<number<<" is 0dd."<<endl;
} else { } else {
cout<<number<<" is 0dd."<<endl; cout<<number<<" is Even."<<endl;
} }
return 0; return 0;

Expression Value of the Expression
!true false (0)
!false true (1)

#include <iostream>
using namespace std;
~int main() {

char ch;
cout<<"Enter a digit or a letter: ";
cin>>ch;

if(ch >= '0' &k ch <= '9'){
cout<<"You entered a digit.\n";
} else if(ch >= 'A' && ch <= 'Z'){
cout<<"You entered an uppercase letter.\n";
} else if(ch >= 'a' & ch <= "z'){
cout<<"You entered an lowercase letter.\n";
} else {
cout<<"That is not a letter or a digit.\n";

return 0;

Character ASCII Value
‘-9 48 - 57

‘N -7 65 -90

‘a’ =7 97 - 122
blank 32

period 46

Blocks and Variable Scope

TION,
R, .

& 4,

& <
: %
o 3
" 2
ERBIL 2008

‘-V’

The scope of a variable is limited to the block in which it is defined. C++ allows you to

create variables almost anywhere in a program.

#include <iostream>
using namespace std;
int main(){

int number;
cout << "Enter a number greater than 0: ";
cin >> number;

if (number > 0){
int number; // Another variable named number.
cout << "Now enter another number: ";
cin >> number;
cout << "The second number was " << number << endl;

}

cout << "Your first number was " << number << endl;

return 0;

Enter a number greater than 0: 17

Now enter another number:
The second number was 25
Your first number was 17

25

The switch Statement

e Switch statement: Determines program
branching based on the value of a
variable or expression.

e Branching: Occurs when one part of the
program leads to the execution of
another part.

e |f/else if statement: Allows branching into
various paths based on true conditions in
a series of tests.

e Switch vs if/else if: Switch tests integer
expression values for branching, while if/
else if tests relational conditions.

switch (value) {

case Choicel:

Statementl;
break;

case Choicel:
Statement’2;
break;

case Choice-n:
Statement—-n;
break;

default:
default statement;

The switch Statement

#include <iostream>
using namespace std;
*int main() {
*int main() { int dayOfWeek = 3;
int dayOfWeek = 3;

#include <iostream>
using namespace std;

switch (dayOfWeek) {

. case 1:
i if (dayOfWeek == 1) { cout << "It's Monday" << endl;
cout << "It's Monday" << endl; break;
4 } else if (dayOfWeek == 2) { case 2:
cout << "It's Tuesday" << endl; cout << "It's Tuesday" << endl;
break;
. } else if (dayOfWeek == 3) { case;?a

cout << "It's Wednesday" << endl; cout << "It's Wednesday" << endl;

r } else { break;
cout << "It's some other day" << endl; defaulie:
} cout << "It's some other day" << endl;
}
return 0; return 0;

#include <iostream>
using namespace std;
int main() {
char operation;
double num, result;

cout << "Enter an operation (S for square, C for cube): ";
cin >> operation;

cout << "Enter a number: ";
cin >> num;

switch (operation) {

case 'S':
result = num * num;
cout << "Square: " << result << endl;
break;
case 'C':
result = num * num * num;
cout << "Cube: " << result << endl;
break;
default:
cout << "Invalid operation" << endl;
}
return 0;

