
L e c t u r e 5

Programming I

Tishk International University
IT Department
Course Code: IT-117

hemin.ibrahim@tiu.edu.iq

Loops

Hemin Ibrahim
Fall 2023

Outline
• Increment and Decrement

• Intro to loops

• The while loop

• The for loop

• Break statement

Objectives
• Apply increment/decrement operations and loop structures through hands-on coding

exercises.

• Write efficient and optimized code using the most suitable loop construct and

judicious use of increment/decrement operations.

• Enhance problem-solving skills by tackling diverse challenges with loops and control

flow mechanisms.

"++" and "--" are operators that add and subtract 1 from their operands. To
increment a value means to increase it by one, and to decrement a value means to
decrease it by one.

Both of the following statements increment the variable num:

num = num + 1; 
num += 1;

And num is decremented in both of the following statements:

num = num - 1; 
num -= 1;

The Increment and Decrement Operators

C++ has operators dedicated to increasing (++) and decreasing (--) variables.

The following statement uses the ++ operator to increment num:

num++; // Increment by One

num--; // Decrement by One

The Increment and Decrement Operators (Cont)

Postfix and Prefix Modes
Postfix Mode: (x++)

• Operator comes after the operand.

• Operand's value is used first, then it's incremented or decremented.

• The syntax for the postfix increment and decrement operators is x++ and x--,

respectively.

Prefix Mode: (++x)

• Operator comes before the operand.

• Operand is incremented or decremented first, then its updated value is used.

• The syntax for the prefix increment and decrement operators is ++x and --x,

respectively.

The Difference Between Postfix and Prefix Modes

• Combined Assignment, also known as compound assignment, involves combining
an arithmetic operation with an assignment.

• It allows you to perform an operation (such as addition, subtraction, multiplication,
etc.) and assignment in a single statement.

Combined Assignment

A loop is a control structure that causes a statement or group of statements to
repeat.

C++ has three looping control structures:

• while loop,

• do-while loop, and

• for loop.

The difference between these structures is how they control the repetition.

Introduction to Loops

Introduction to Loops

• There are two main types of loops: conditional and count-controlled loops.

• A conditional loop runs as long as a specific condition is true, and the number

of iterations is uncertain. (While Loop)

• In contrast, a count-controlled loop repeats a fixed number of times. (For

Loop)

Introduction to Loops

The while loop has two important parts:

1- an expression that is tested for a true or false value.

2- a statement or block that is repeated as long as the expression is
true.

The while Loop

The while Loop

The while Loop

The while Loop - Example #1

The while Loop - Example #2
Write C++ code that prints numbers from 1 to 10 and finds the square for each.

Output

Infinite Loops

In most situations, loops need a way to
stop. This means that something inside
the loop must eventually make the
condition false.

The below loop goes on forever because it
lacks a statement to modify the number
variable. With each test of the expression
counter <= 5, the number variable
remains at 1, causing an infinite loop.

Using the while Loop for Input Validation - Example #1

Output

Using the while Loop for Input Validation - Example #2

Output

Using the while Loop for Input Validation

Using the while Loop for Input Validation - Example #2

Output

The for Loop

• Count-controlled loops are so common that C++ provides a type of loop specifically

for them. It is known as the for loop.

• The for loop is suitable when a known number of iterations is required.

• Three essential elements define a count-controlled loop:

• Initialization: It starts with setting a counter variable to an initial value.

• Termination condition: The loop runs while the counter variable is less than or

equal to a maximum value; when false, the loop ends.

• Update: The counter variable is modified during each iteration, typically

through incrementing.

The for Loop

for (int counter =1; counter <= 10 ; counter++)

Control variable name

for keyword

Initial value

Required semicolon separator

Loop continuation condition

Control variable
increment

semicolon
separator

The for Loop

The for Loop - Example #1

Output

The for Loop - Example #2

Output

Other Forms of the Update Expression
• Vary the control variable from 1 to 100 in increments of 1.

• Vary the control variable from 100 down to 1 in increments of -1 (decrements of 1).

• Vary the control variable from 7 to 77 in steps of 7.

• Vary the control variable from 20 down to 2 in steps of -2.

• Vary the control variable over the following sequence of values: 2, 5, 8, 11, 14, 17, 20.

for (int i = 1; i <= 100; i++)

for (int i = 100; i >= 1; i--)

for (int i = 7; i <= 77; i += 7)

for (int i = 20; i >= 2; i -= 2)

for (int i = 2; i <= 20; i += 3)

Creating a User Controlled for Loop

Write a C++ program that asks the user to input two numbers and print the numbers between
them.

Output

“break" Statement

•The break statement is used to prematurely exit a loop (such as a
for loop and while loop) when a certain condition is met.

•When encountered, the break statement terminates the nearest
enclosing loop.

•It's useful for avoiding unnecessary iterations and improving code
efficiency.

“break" Statement

