
Chapter 2 

Static stability - 6 DOF 

     2.1 Definitions 

Many of the Forces on an aircraft are produced by Lifting Surfaces.  

• Major exception is propulsion.  

Lifting surfaces are characterized by: 

     Planform Shape: The shape of the wing when viewed from above.  

          • Surface area, tapering, etc.  

          • determines magnitude of forces.  

    Airfoil: The cross-section of the wing. 

         • Determines type of forces and moment ( Positivity, location, etc ) 

2.1.1 Planform Shapes: The planform shape of the wing will affect  

   • Lift  

• Drag  

• Moment  

    

Figure 2.1: Planform Shapes 



Rectangular wing planform. Correction factors can be used for rounded or swept-wing 

configurations. 

 

Figure 2.2: 

Chord, c: The width of the surface at some point. This determines the size of the airfoil.                    

Root Chord, Cr: The width of the surface where joined to the airplane.                                                        

Tip Chord, Ct: The width of the surface at free-stream.                                                                          

Span, b: The total length of the surface.                                                                                                     

Quarter-Chord Line: The line connecting the points of 1/4 chord along the span of the surface. 

The 1/4 chord point is approximately the aerodynamic center of an airfoil - to be discussed 

Sweep: The angle the 1/4-chord line makes with the horizontal. 

 2.2 Coordinate Systems 

 

Figure : 2.3 

 

 



2.2.1 The Body-Fixed Frame:  

 

    Orientation between reference Frames 

         Euler angles; Euler angles represent three composed and finite rotations given in a pre-

establish order that move a reference frame to a given referred frame. This is equivalent to 

saying that any orientation can be achieved by composing three elemental and finite rotations 

(rotations around a single axis of a basis), and also equivalent to saying that any rotation matrix 

can be decomposed as a product of three elemental rotation matrices. 

    Transformation or rotation matrix: If the three components of a vector A in FI are known, 

the transformation or rotation matrix LFI expresses a vector A in the reference FF system as 

follows: 

 

 

 



Rotation matrices can be used to calculate the effect of ANY rotation.  

 

Remember to use the right-hand rule to determine what is a positive rotation. 

The rotation matrices are (for reference): 

 

Rotation matrices, can be used to calculate a sequence of rotations: Roll-Pitch-Yaw: 

Roll-Pitch-Yaw: 

 

Note the order of multiplication is critical. 

 

Example Consider a pure lift force of 10MN after a pitch up of 10 deg and a yaw of 20 deg. 

 

 

                  

 



Compare this to the same rotations in the reverse order (Yaw, then Pitch) 

 

 

Which is still in the x − z plane!!! Why? 

Compare to Pitch, Yaw value: 

 

   Coordinate Rotations (Roll-Pitch-Yaw) 

There are 3 basic rotations an aircraft can make: 

 • p = Rotation rate about x-axis (rad/s) - roll rate          Rolling = Rotation about x-axis 

•   q = Rotation rate about y-axis (rad/s) - pitch rate      Pitch = Rotation about y-axis 

•    r = Rotation rate about z-axis (rad/s) - yaw rate           Yaw = Rotation about z-axis 

   ( Each rotation is a one-dimensional transformation.) 

(Any two coordinate systems can be related by a sequence of 3 rotations of the)  

          • A Roll to the right is a positive rotation.  

         • An upward pitch is positive.  

         • A yaw to the right is positive 

     2.2.2 Forces and Moments 

         A-Forces: These forces and moments have standard labels. The Forces are:  

              X -  Axial Force Net Force in the positive x-direction  

             Y -  Side Force Net Force in the positive y-direction  

             Z -  Normal Force Net Force in the positive z-direction 

         B – Moments: The Moments are called, intuitively:  

           L -  Rolling Moment Net Moment in the positive p-direction 



            M -  Pitching Moment Net Moment in the positive q-direction  

         N -  Yawing Moment Net Moment in the positive r-direction. 

         The perturbation variables are shown in Fig. 2.3 and summarised in Table 2.1.       

 Most of these forces scale in a linear way with something called Dynamic Pressure. 

 

 

              A simple description of the perturbation variables is given in Table 2.2. The intention is 

to provide some insight into the physical meaning of the many variables used in the 

model. Note that the components of the total linear velocity perturbations (U, V, W ) 

are given by the sum of the steady equilibrium components and the transient 

perturbation components (u, v, w) thus, 

                               U = Ue + u             V = Ve + v                  W = We + w 

 



        2.3 Dynamic Pressure:  

             Dynamic Pressure, Q, refers the pressure of the air moving over the aircraft and is 

given by                               Q = (1/ 2) ρV2  

            where    • ρ is the density of the air ( kg/m3 or slug/f t3 )  

                 • v is the magnitude of the velocity of the aircraft with respect to the air ( m/s or f t/s )  

Among other things, Lift is usually proportional to dynamic pressure.  

Something like                    Lif t = CLQS  

       where       • CL is a non-dimensional lift coefficient which depends primarily on the airplane 

configuration and angle-of-attack  

                    • S is surface area of the plane (or another reference area). 

In any case, this provides a convenient way to quantify the forces and moments without having 

to account for the effect of altitude and airspeed. 

 

Thus the forces on the aircraft are defined by the quantities Cx, Cy, and Cz. 

Moments are similarly defined 

 

      where            • S again is surface area of the plane (or another reference area). 

                            • lw is the wingspan  

                            • lc is the mean chord  

      2.4 Sideslip and Angle of Attack 

      Two quantities which heavily influence Cx, Cy, Cz, Cl , Cm, and Cn are angle of attack, α, 

and sideslip angle, β. 

• Let ~V be the velocity vector of the aircraft with respect to the free-stream and expressed in the 

body-fixed frame.  

• If ~Vis projected onto the x-z plane, then α is the angle between the x-axis and this projection.  

• If ~V is projected onto the x-y plane, then β is approximately the angle between the x-axis and 

this projection. 



 

Figure 2.4: Side slip and angle of attak 

            If we introduce the notation: 

                                          

 

 

    Example: Suppose an airplane is flying at 20 km at a speed of 200 m/s. The surface area is            

30 m2 . The aircraft has a wingspan of 10 m. Suppose we have the following data  

              Cx = 1.1       and      Cy = 0.1     and       Cz = 2.3    the density of air is .08891 kg/m3 . 

The wind attach the airplane from the direction: 

                                                           

Calculate Q, Z, X, lift to drag ratio (L/D), α, and β 

         

 Solution  

           Then the dynamic pressure is 



 

The Lift force is about      Z = Cz ∗ Q ∗ S = 2.3 ∗ 178 ∗ 30 = 12, 282N 

Likewise, the drag is about  

                                             X = Cx ∗ Q ∗ S = 1.1 ∗ 178 ∗ 30 = 5, 874N  

This gives a Lift-to-Drag ration of about             L/D = Cz/Cx = 2.1 

 

2.5 Airfoils:  

Chord Line: A line connecting the leading edge to the trailing edge.                                                   

Camber Line: A line connecting the points halfway between the top and bottom surfaces. 

Camber: Camber refers to the difference between the chord line and the camber line. Camber 

determined the moment produced by a wing. Most wings have positive camber. 

 

 2.2.1 Aerodynamic Center: The point at which the pitching moment does not vary with angle 

of attack.                                                                                                                                                                          

• Convenient since CM is now static.             • Typically located at the 1/4-chord line.  

Forces and Moments: The motion of air creates forces and moments.                                                             

• Lift and Drag are measured at the aerodynamic center.                                                                                             

• Moment is measured as the moment about the aerodynamic center. • Usually take standard 

form 

                 L = CLQS,                    D = CDQS, and          M = CM QSl 



       • CL (Lift coefficient) and CD ( Drag coefficient) will depend on angle of attack and airfoil                   

geometry.  

       • CM will (hopefully) depend only on airfoil geometry, especially camber. 

 

2.2.2 Lift Coefficient:  

Lift is given by             L = CLQS:              CL = CL0 + CLαα  

             where        • CL0 is the lift produced at steady-level flight. We define CL0 = 0 for an 

airfoil. However, for the aircraft overall, we want CL0 > 0  ( Don’t want to fly nose-up all the 

time).  

          • CLα > 0 is determined by the airfoil type and other factors ( Sweep, planform shape, 

winglets, Mach number, etc.).     

     Figure 2.5: Lift and Drag   

2.2.3 Drag Coefficient:          D = CDQS                                                                                                    

The drag coefficient, CD, of an airfoil is related to the lift coefficient, CL. It can be approximated 

as                             CD = CD0 + K𝑪𝑳
𝟐                                                                                                      

where            • CD0 and K are determined by airfoil type and other factors ( Mach number, thrust 

coefficient, etc.) 

2.2.4 Moment Coefficient: Positive pitching moment is given by  

                                        M = CM QSl    

     General form:            CM = CM0 + CMα α 

where           • CM0 is the moment produced at steady-level flight.  



                    • For the aircraft overall, we typically want CM0 > 0 (negative camber), but most 

airfoils have positive camber.  

• By definition    CMα = 0 for an airfoil if we are considering moment about the aerodynamic 

center.  

2.3 Stability: 

Two conditions are necessary for an airplane to fly its mission successfully:                            

      1.The airplane must be able to achieve equilibrium flight and  

      2. It must have the capability to maneuver for a wide range of flight velocities and 

altitudes. 

The stability and control characteristics of an airplane are referred to as the vehicle's 

handling or flying qualities. 

In the study of airplane stability and control, we are interested in: 

          - what makes an airplane stable? 

          - how to design the control systems? 

         - what conditions are necessary for good handling (good flying qualities)? 

 

2.3.1 Static and dynamic Stability :  

 Is a property of an equilibrium state. To discuss stability we must first define what is meant 

by equilibrium. If an airplane is to remain in steady uniform flight, the resultant force as 

well as the resultant moment about the center of gravity must both be equal to 0. An 

airplane satisfying this requirement is said to be in a state of equilibrium or flying at a trim 

condition.  On the other hand, if the forces and moments do not sum to 0, the airplane will be 

subjected to translational and rotational accelerations. 

The subject of airplane stability is generally divided into: 

1- Static stability: is the initial tendency of the vehicle to return to its equilibrium state 

after a disturbance. An example of the various types of static stability is illustrated in 

Figure 2.6. 

Static stability is classified  according to the nature tendency of an aircraft's response 

to disturbance from its original steady flight path (equilibrium):  

a-  Positive when, subsequent to the displacement, the forces and moments acting 

on the aircraft return it to its original steady flight path (statically stable).  

b- Neutral if the forces and moments cause the aircraft to take up a new flight path 

of constant relationship to the original. 



c- Negative if the aircraft is caused to diverge from the original steady flight path 

(an Statically unstable condition). 

      

 

                         

Figure 2.6: Illustrating various conditions of static stability. 

2- dynamic stability: concerned with the time history of the motion of the vehicle after 

it is disturbed from its equilibrium point. Figure 2.7 shows several airplane motions 

that could occur if the airplane were disturbed from its equilibrium conditions. 

 

Note that the vehicle can be statically stable but dynamically unstable. Static 

stability, therefore, does not guarantee dynamic stability.  

However, for the vehicle to be dynamically stable it must be statically stable. 

 



 
FIGURE 2.7 Examples of stable and unstable dynamic motions. 

           Of particular interest to the pilot and designer is the degree of dynamic stability. 

Dynamic stability usually is specified by the time it takes a disturbance to be damped to half of  

its initial amplitude or, in the case of an unstable motion, the time it takes for the initial 

amplitude of the disturbance to double. In the case of an oscillatory motion, the frequency and 

period of the motion are extremely important. 

Control: deals with the issue of whether the aerodynamic and propulsive controls are adequate 

to trim the vehicle (i.e., produce an equilibrium state) for all required states in the flight 

envelope.  

In order to study this evolution we need to solve the system of equation describing the 6DOF 

movement of the aircraft.  

2.4 Static Stability and Control 

2.4.1 Definition of Longitudinal Static Stability 

In the first example we showed that to have static stability we need to develop a restoring 

moment on the ball when it is displaced from its equilibrium point. The same requirement exists 

for an airplane. Let us consider the two airplanes and their respective pitching moment curves 

shown in Figure 2.8. The pitching moment curves have been assumed to be linear until the wing 

is close to stalling. 

 

 



FIGURE 2.8 Pitching moment coefficient versus angle of attack. 

In Figure 2.8, both airplanes are flying at the trim point denoted by B; that is, CmCK = 0. 

Suppose the airplanes suddenly encounter an upward gust such that the angle of attack is 

increased to point C. At the angle of attack denoted by C, airplane 1 would develop a negative 

(nose-down) pitching moment that would tend to rotate the airplane back toward its 

equilibrium point. However, for the same disturbance, airplane 2 would develop a positive 

(nose-up) pitching moment that would tend to rotate the aircraft away from the equilibrium 

point. If we were to encounter a disturbance that reduced the angle of attack, say, to point A, we 

would find that airplane 1 would develop a nose-up moment that would rotate the aircraft back 

toward the equilibrium point. On the other hand, airplane 2 would develop a nose-down moment 

that would rotate the aircraft away from the equilibrium point. On the basis of this simple 

analysis, we can conclude that to have static longitudinal stability the aircraft pitching moment 

curve must have a negative slope. That is, 

……………..   (2.1) 

through the equilibrium point. 

Another point that we must make is illustrated in Figure 2.9. Here we see two pitching moment 

curves, both of which satisfy the condition for static stability. However, only curve 1 can be 

trimmed at a positive angle of attack. Therefore, in addition to having static stability, we also 

must have a positive intercept, that is, Cmo > 0 to trim at positive angles of attack. Although we 

developed the criterion for static stability from the Cm versus α curve, we just as easily could 

have accomplished the result by working with a Cm versus C, curve. In this case, the requirement 

for static stability would be as follows: 

  ………..2.2 

   

Figure 2.9: Flow field around an airplane created by the wing. 



The two conditions are related by the following expression:  

  ………2.3 

which shows that the derivatives differ only by the slope of the lift curve. Cmα depends, among 

other, of the center of gravity of the aircraft. 

 

In the condition of equilibrium, the sum of moments around the center of gravity is null, and 

therefore it must be fulfilled that 

Cm = Cm0+ Cmα α + Cmδe δe = 0. 

Two main problems can be derived in the longitudinal control:  

1. Determine the deflection angle of the elevator, , to be able to fly in equilibrium at a given 

angle of attack, : 

 
2. Determine the angle of attack to fly in equilibrium, αe , for a known deflection of the 

elevator, : 

 
Figure 2.10 shows the effects of the elevator’s deflection in the angle of attack of 

equilibrium. Simplifying, for a , the angle of attack of equilibrium at which the aircraft 

flies increases and so does the coefficient of lift. Since the lift must be equal to weight, 

the aircraft must fly slower. In other words, the elevator is used to modify the velocity of 

a steady horizontal flight. 

 
Figure 7.15: Effects of elevator on moments coefficient. 



As we have pointed out before, the geometric condition of the aircraft vary during the 

flight. Therefore it is necessary to recalculate this conditions and modify the variables  

continuously. This is made using control 

2.4.2 Longitudinal Balancing 

The longitudinal balancing is the problem of determining the state of equilibrium of a 

longitudinal movement in which the lateral and directional variables are considered 

uncoupled. For the longitudinal analysis, one must consider forces on z-axis (Fz ) and 

torques around y-axis (My ). Generally, it is necessary to consider external actions 

coming from aerodynamics, propulsion, and gravity. However, it is common to consider 

only the gravity and the lift forces in wing and horizontal stabilizer. Additional 

hypotheses include: no wind; mass and velocity are constant. 

The equations to be fulfilled are: 

∑Fz = 0,  

∑My = 0. 

Which results in:       mg−L−Lt = 0,  

                                -Mca +Lxcg −Ltl = 0 

Where Lt is the lift generated by the horizontal stabilizer, Mca is the pitch torque with 

respect to the aerodynamic center, xcg is the distance between the center of gravity and  l 

the aerodynamic center, and is the distance between the center of gravity and the 

aerodynamic center of the horizontal stabilizer. 

2.4.3 Lateral - directional  Stability and control 

Consider again an aircraft in horizontal, steady, linear flight. Suppose in this case that the 

lateral-directional elements (vertical stabilizer, rudder, ailerons) do not produce forces 

nor moments, so that there not exists a primary problem of balancing (as there was in the 

longitudinal case) since we have a longitudinal plane of symmetry. In this case, the 

lateral-direction control surfaces (rudder and ailerons) fulfill a mission of secondary 

balancing since they are used when there exists an asymmetry (propulsive or 

aerodynamic). For instance, aircraft must be able to fly under engine failure, and thus the 

asymmetry must be compensated with the rudder. Another instance could be the landing 

operation under lateral wind, which must be also compensated with the rudder deflection. 

Notice that the center of gravity lays on the plane of symmetry, so that its position does 

not affect the lateral-directional control. Further mathematical analysis will be studied in 

posterior courses. 

 



 
 

 

 



 

 

  

 


