

Tishk International University IT Department Course Code: IT-344/A

Introduction to Machine Learning

The Fundamentals of Data in ML

Spring 2024 Hemin Ibrahim, PhD hemin.ibrahim@tiu.edu.iq

Lecture 3

Outline

- What is Data?
- Why data in ML?
- Types of data
- Data representation
- Using Data in Machine Learning \bullet
- Feature Extraction

Objectives

- Understand the fundamental concept of data
- Distinguish between the core categories of structured and unstructured data. Recognize the importance of choosing suitable data representations for
- effective machine learning algorithms.
- Understand the idea that machine learning algorithms fundamentally rely on data patterns to learn
- Understand the crucial step of splitting data into training, validation, and testing sets to ensure accurate model evaluation
- Understand that Feature extraction extracts essential data points for better machine learning.

The concept of machine learning as

algorithms "learning" from "data" rather

than being explicitly programmed for everything.

What is Data?

In machine learning, it's the information used to train the algorithms.

- Numerical values (e.g., house prices, test scores)
- Text (e.g., product reviews, tweets)
- Images (e.g., medical scans, photographs)

Data is a collection of raw facts, figures, measurements, or observations.

• Audio (e.g., speech recordings, music)

• Video (eg., movie, a tutorial, a recorded live event)

Data

is power, control, money, dominance, ...

PCWorld

BEST PICKS Y REVIEWS

personal records just leaked

The data set clocks in at a massive 12TB.

By Alaina Yee Senior Editor, PCWorld | JAN 24, 2024 11:16 AM PST

HOW-TO Y DEALS Y LAPTOPS WINDOWS SECURITY MORE Y NEWSLETTERS

Time to update your password: 26 billion

Why Data in ML?

- Data is the foundation of machine learning algorithms.
- Learning from patterns: Machine learning methods can find complex patterns and correlations in data that may be difficult for humans.
- High-quality, relevant data leads to accurate models.
- Making predictions: Based on learned patterns, models predict outcomes <u>unseen data</u> points (e.g., weather, future sales).
- Driving decisions: Data guides decisions, making industries more efficient and effective.

Types of data

- Structured Data: highly organized and follows a specific format.
 Common in business applications, financial records, health data, and
 - Common in business applications, relational databases.
- Unstructured Data: lacks a predefined data model or structure.
 - Text documents (e.g., emails, articles, social media posts).
 - Multimedia files (e.g., images, audio, video).
- Semi-Structured Data: it has some organizational properties but doesn't conform to a strict structure like structured data.
 - XML, API, and JSON

Data Collection and Preparation

Data collection and preparation are crucial steps in the data analysis and machine learning pipeline.

- scraping, surveys, logs.. Each source may have its own format and structure. feature engineering (generate new features)
- Collecting data from various sources: sensors, databases, APIs, web Data preprocessing: cleaning, normalization, handling missing values, and
- Why it is a challenge?
 - availability
 - quality
 - relevance
 - privacy

- Tabular data: Rows and columns
- Text data: Bag-of-words, TF-IDF.
- Image data: Pixel values.
- Sound data: Waveforms, spectrograms.

Tabular data: Rows and columns

Text data: Bag-of-words, TF-IDF.

I love this movie! It's sweet, but with satirical humor. The dialogue is great and the adventure scenes are fun... It manages to be whimsical and romantic while laughing at the conventions of the fairy tale genre. I would recommend it to just about anyone. I've seen it several times, and I'm always happy to see it again whenever I have a friend who hasn't seen it yet!

fairy loveto always whimsical and are seen anyone friend dialogue happy recommend adventure satirical whosweet it movie but to it romantic vet several the humor again the would seen to scenes the manages the timesand fun and about while whenever conventions have

it	6
1	5
the	4
to	3
and	3
seen	2
yet	1
would	1
whimsical	1
times	1
sweet	1
satirical	1
adventure	1
genre	1
fairy	1
humor	1
have	1
great	1

. . .

. . .

Image data: Pixel values.

157	153	174	168	150	152	129	151	172	161	155	156
155	182	163	74	75	62	33	17	110	210	180	154
180	180	50	14	34	6	10	33	48	105	159	181
206	109	5	124	131	111	120	204	166	15	56	180
194	68	137	251	237	239	239	228	227	87	71	201
172	105	207	233	233	214	220	239	228	98	74	206
188	88	179	209	185	215	211	158	139	75	20	169
189	97	165	84	10	168	134	11	31	62	22	148
199	168	191	193	158	227	178	143	182	105	36	190
205	174	155	252	236	231	149	178	228	43	95	234
190	216	116	149	236	187	85	150	79	38	218	241
190	224	147	108	227	210	127	102	36	101	255	224
190	214	173	66	103	143	95	50	2	109	249	215
187	196	235	75	1	81	47	0	6	217	255	211
183	202	237	145	0	0	12	108	200	138	243	236
195	206	123	207	177	121	123	200	175	13	96	218

157	153	174	168	150	152	129	151	172	161	155	156
155	182	163	74	75	62	33	17	110	210	180	154
180	180	50	14	34	6	10	33	48	106	159	181
206	109	5	124	131	111	120	204	166	15	56	180
194	68	137	251	237	239	239	228	227	87	п	201
172	105	207	233	233	214	220	239	228	98	74	206
188	88	179	209	185	215	211	158	139	75	20	169
189	97	165	84	10	168	134	11	31	62	22	148
199	168	191	193	158	227	178	143	182	106	36	190
206	174	155	252	236	231	149	178	228	43	96	234
190	216	116	149	236	187	86	150	79	38	218	241
190	224	147	108	227	210	127	102	36	101	255	224
190	214	173	66	103	143	96	50	2	109	249	215
187	196	235	75	1	81	47	0	6	217	255	211
183	202	237	145	0	0	12	108	200	138	243	236
196	206	123									

3

0 2 15 0 0 11 10 0 0 0 0 9

9	0	0	0
32	0	0	29
22	103	10	0
53	251	124	1
51	238	255	49
32	255	255	36
37	252	235	62
43	255	137	0
48	144	6	0
08	36	0	19
17	0	7	0
11	0	1	0
82	10	0	4
55	194	9	0
32	230	56	0
55	250	125	3
51	245	61	0
53	255	52	4
55	129	0	5
18	14	12	0
0	0	4	1
6	6	0	0

Sound data: Waveforms, spectrograms.

Spectrogram

Using Data in Machine Learning

- Splitting data into training, validation, and testing sets.
- Cross-validation for model evaluation.
- Handling imbalanced datasets.

Training, Validation and Testing Data

- Training data: Used to train machine learning models.
- Validation data: Used to fine-tune model parameters.
- Testing data: Used to evaluate model performance.

Training, Validation and Testing Data

Teachable Machine

Train a computer to recognize your own images, sounds, & poses.

A fast, easy way to create machine learning models for your sites, apps, and more – no expertise or coding required.

<u>https://teachablemachine.withgoogle.com/</u>

Cross-validation

testing it on different parts of the data.

K-Fold Cross-Validation: The dataset is divided into k subsets/folds of approximately equal size.

F

F

F

F

Cross-validation is a method to check how well a model works by repeatedly

4-fold validation (k=4)

old 1	Testing set		Training set	
old 2	Training set	Testing set	Traini	ng set
old 3	Traini	ng set	Testing set	Training set
old 4		Training set		Testing set
0	% 25	% 50	% 75	1%

Cross-validation

the one left out. This process is repeated for each data point in the dataset.

Leave-One-Out: The model is trained on all but one data point and tested on

Imbalanced Datasets

Imbalanced datasets refer to datasets where one class has significantly fewer

samples compared to the other(s)

Handling Imbalanced Datasets

Resampling Methods:

- Undersampling: Randomly removing samples from the majority class to balance the class distribution.
- Oversampling: Duplicating samples from the minority class or generating synthetic samples to increase its representation.

Al State of the art Applications

Al State of the art Applications

Google LAUNCHES NEW AI G Gemini

Al State of the art Applications

Features

In the context of machine learning, features refer to individual measurable properties or characteristics of the data that are used as inputs for a predictive model.

	Training / test data							
	Feat	Lal						
Sepal length	Sepal width	Petal length	Petal width	Spe				
5.1	3.5	1.4	0.2	Iris				
4.9	3.0	1.4	0.2	Iris				
7.0	3.2	4.7	1.4	Iris				
6.4	3.2	4.5	1.5	Iris				
6.3	3.3	6.0	2.5	Iris				
5.8	3.3	6.0	2.5	Iris				

Feature Extraction

tasks involving structured or unstructured data. features that capture relevant information for a given task or problem

- Feature extraction is a fundamental aspect of machine learning, particularly in
- It is the process of selecting, transforming, and combining raw data into a set of

Practical - Extract features from image

- Edge Detection: Detects edges in the image using the Canny edge detector algorithm. (Calculates the number of detected keypoints)
- Keypoint Detection: Identifies interest points (corners) in the image.
- HOG Features: Calculates the Histogram of Oriented Gradients (HOG) features. (Calculates the mean and standard deviation of the HOG features)

