Tishk International University
Architectural Engineering Department
First Grade

Fall semester 2023-2024

Calculus

Lecture -5Trigonometric Functions

Lecturer - Asmaa Abdulmajeed

1

Contents

1. What's a trigonometric function?
2. Systems of measuring angles
3. Trigonometric functions in right angles
4. Trigonometric functions unit circle approach

1. What's a trigonometric function?
 2. Systems of measuring angles

3

1. What's A Trigonometric Function?

* The word 'trigonometry' is derived from the Greek words' 'trigon' and 'metron' which means measuring the sides of a triangle.
* Trigonometric functions are used to model many phenomena, including sound waves, vibrations of strings, alternating electrical current, and the motion of pendulums.
* In fact, almost any repetitive, or cyclical, motion can be modeled by some combination of trigonometric functions.
* Usually, we follow two types of conversions for measuring angles, i.e., (1) Sexagesimal system (2) Circular system. (3) Centesimal system
* In this section, we define the six basic trigonometric functions and look at some of the main identities involving these functions.

2. Systems of measuring angles (i) Sexagesimal system

- The Sexagesimal system, also known as the English system, is the most preferred angle measurement system. Degrees, Minutes and Seconds are the units of measure in the sexagesimal system.
- In this system, the right angle is split into 90 equally divided parts. Each part is called a degree. $\left(1^{\circ}\right)$. Furthermore, one degree is split into 60 equally divided parts. Each part is known as the sexagesimal minute (1^{\prime}). Every single minute is split into 60 equally divided parts, known as the sexagesimal second ($1^{\prime \prime}$).
- This system is prevalent and widely used in practical applications of Trigonometry.

In short,

- 1 right angle $=90$ degrees (or 90°)
- 1 degree (or 1°) $=60$ minutes (or 60^{\prime})
- 1 minute (or 1^{\prime}) $=60$ seconds (or $60^{\prime \prime}$)

A complete rotation describes 360°, which forms a full circle.

Example

Let's convert $40^{\circ} 4$ minutes 2 seconds:
40° will remain the same.
$1^{\circ}=60$ minutes
Therefore, 4 minutes $=\frac{4}{60}=0.067$ minutes
2 seconds $=\frac{2}{60}=0.033$ seconds
$40^{\circ} 4$ minutes 2 seconds $=40$ degree +0.067 minutes +0.033 seconds $=40.1$

5

6

A/ Conversion - Sexagesimal System to Circular System

In sexagesimal system, 1 right angle $=90^{\circ}$ and in circular system, 1 right angle $=\frac{\pi}{2}$ radian

$=>90^{\circ}=\frac{\pi}{2}$ radian $=>1^{\circ}=\frac{\pi}{180}$ radian

For example $30^{\circ}=30 \times \frac{\pi}{180}=\frac{\pi}{6}$ radian

B/ Conversion - Circular System to Sexagesimal System

In circular system, 1 right angle $=\frac{\pi}{2}$ and in sexagesimal system, 1 right angle $=90^{\circ}$

For example, $\frac{\pi}{4}$ radian $=\left(\frac{\pi}{4}\right) \times\left(\frac{180}{\pi}\right)=45^{\circ}$

7

- If an angle is given without mentioning units, it is assumed to be in radians. The relation between degree measures and circular (radian) measures of some standard angles are given below:

Tishk International University

Degree $\left(^{\circ}\right.$)	Radian (rad)
0°	0
30°	$\pi / 6$
45°	$\pi / 4$
60°	$\pi / 3$
90°	$\pi / 2$
120°	$(2 \pi) / 3$
135°	$(3 \pi) / 4$
150°	$(5 \pi) / 6$
180°	π
270°	$(3 \pi) / 2$
360°	2π

Lecturer- Asmaa Abdulmajeed

Example-1-

Convert the angles from radians to degrees.
a. $\frac{3 \pi}{2}$
b. $\frac{7 \pi}{6}$
c. $\frac{\pi}{2}$
d. $\frac{11 \pi}{6}$

Solution:
a. $\frac{3 \pi}{2} \cdot \frac{180}{\pi}=\frac{540}{2}=270^{\circ}$
b. $\frac{7 \pi}{6} \cdot \frac{180}{\pi}=\frac{1260}{6}=210^{\text {。 }}$
C. $\frac{\pi}{2} \cdot \frac{180}{\pi}=\frac{180}{2}=90^{\circ}$
d. $\frac{11 \pi}{6} \cdot \frac{180}{\pi}=\frac{1980}{6}=330^{\circ}$

9

Example-2-

Convert the angles from degrees to radians.
a. 120°
b. 210°
C. 150°
d. 315°

Solution:

a. $\quad 120^{\circ} \cdot \frac{\pi}{180}=\frac{120 \pi}{180}=\frac{2 \pi}{3}$
b. $210^{\circ} \cdot \frac{\pi}{180}=\frac{210 \pi}{180}=\frac{7 \pi}{6}$
C. $150^{\circ} \cdot \frac{\pi}{180}=\frac{150 \pi}{180}=\frac{5 \pi}{6}$
d. $\quad 315^{\circ} \cdot \frac{\pi}{180}=\frac{315 \pi}{180}=\frac{7 \pi}{4}$

Example-3-

Convert $18^{\circ} 30^{\prime} 42^{\prime \prime}$ into the degree.

Solution:
$18^{\circ} 30^{\prime} 42^{\prime \prime}=18^{\circ}+(30 / 60)^{\circ}+(42 /(60 \times 60))^{\circ}$
$=18^{\circ}+0.5^{\circ}+0.01166^{\circ}$
$=18.51167^{\circ}$

11

Example-4-

Convert the degree measure to radians, or the radian measure to degrees.

1. 135°
2. $\frac{5 \pi}{4}$
3. -50°

3. Trigonometric functions in right angles
 4. Trigonometric functions unit circle approach

13

3. Trigonometric functions in right angles

If you have a right triangle, there are six ratios of sides that are always constant.

- $\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }} \quad \bullet \csc \theta=\frac{\text { hypotenuse }}{\text { opposite }}$
- $\cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }} \quad \bullet \sec \theta=\frac{\text { hypotenuse }}{\text { adjacent }}$
- $\tan \theta=\frac{\text { opposite }}{\text { adjacent }}$

$$
\cot \theta=\frac{\text { adjacent }}{\text { opposite }}
$$

Example-5-

Find the values of the six trigonometric functions for angle θ.

15

Solution :
The trigonometric ratios are:
Opposite side $=8$
Adjacent Side $=6$
Let x be the hypotenuse.
By the Pythagorean theorem,

$$
\begin{aligned}
x & =\sqrt{8^{2}+6^{2}} \\
& =10
\end{aligned}
$$

Therefore, hypotenuse $=10$.

Substitute:
$\sin \theta=\frac{8}{10}$ or $\frac{4}{5}$
$\cos \theta=\frac{6}{10}$ or $\frac{3}{5}$
$\tan \theta=\frac{8}{6}$ or $\frac{4}{3}$
$\csc \theta=\frac{10}{8}$ or $\frac{5}{4}$
$\sec \theta=\frac{10}{6}$ or $\frac{5}{3}$
$\cot \theta=\frac{6}{8}$ or $\frac{3}{4}$

4. Trigonometric functions unit circle approach

- A unit circle has a center at $(0,0)$ and radius 1 . In a unit circle, the length of the intercepted arc is equal to the radian measure of the central angle 1.
- Comparing the unit circle formulas and the right triangle formulas develops the formulas for any angle. For example, consider $\sin \theta$.
$\sin \theta=y \quad$ Unit Circle
$\sin \theta=\frac{\mathrm{opp}}{\mathrm{hyp}}$ Right Triangle
$\sin \theta=\frac{y}{r} \quad$ Apply the right triangle formula for the acute angle by the origin.
- Notice the last equation matches the unit circle formula with $r=1$. All the unit circle formulas can be similarly modified.

$$
\begin{array}{ll}
\sin \theta=\frac{y}{r} & \csc \theta=\frac{r}{y} \\
\cos \theta=\frac{x}{r} & \sec \theta=\frac{r}{x} \\
\tan \theta=\frac{y}{x} & \cot \theta=\frac{x}{y}
\end{array}
$$

- where θ is an angle in standard position with point (x, y) on the terminal side and $\quad r=\sqrt{x^{2}+y^{2}}$

17

- The sine function of an angle t equals the y-value of the endpoint on the unit circle of an arc of length t.
- The cosine function of an angle t equals the x-value of the endpoint on the unit circle of an arc of length t.

```
cost=x
sin}t=
```


Special Angles: $30^{\circ}, 45^{\circ}$, and 60°

The angles $\mathbf{3 0 ^ { \circ }}, \mathbf{4 5}^{\circ}$, and 60° have special properties for \sin , \cos and tan.

- Memorizing sounds like a pain, but don't worry, there are some tricks to help. Let's start with the values for \sin.

	0°	30°	45°	60°	90°
sin goes: $0,1,2,3,4$	$\frac{\sqrt{0}}{2}$	$\frac{\sqrt{1}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{4}}{2}$

- These are the only values you need to memorize. Can you see why?

	0°	30°	45°	60°	90°
\cos goes $4,3,2,1,0$	$\frac{\sqrt{4}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{1}}{2}$	$\frac{\sqrt{0}}{2}$

21

- The final trick is this:

$$
\tan =\frac{\sin }{\cos }
$$

$\tan 0^{\circ}=\frac{\sin 0^{\circ}}{\cos 0^{\circ}}=\frac{0}{1}=0$
$\tan 30^{\circ}=\frac{\sin 30^{\circ}}{\cos 30^{\circ}}=\frac{1}{2} \div \frac{\sqrt{3}}{2}=\frac{1}{(\sqrt{3})}=\frac{\sqrt{3}}{3}$
$\tan 45^{\circ}=\frac{\sin 45^{\circ}}{\cos 45^{\circ}}=\frac{\sqrt{2}}{2} \div \frac{\sqrt{2}}{2}=1$
$\tan 60^{\circ}=\frac{\sin 60^{\circ}}{\cos 60^{\circ}}=\frac{\sqrt{3}}{2} \div \frac{1}{2}=\sqrt{3}$
$\tan 90^{\circ}=\frac{\sin 90^{\circ}}{\cos 90^{\circ}}=\frac{1}{0}=$ undefined

Always rationalize the denominator so you don't lose marks.

- Tan also leads to a nice pattern, although it doesn't include 0° and 90° like \sin and \cos do.

	30°	45°	60°
$\tan =\left(\frac{\sin }{\cos }\right)$	$\frac{(\sqrt{3})^{1}}{3}$	$\frac{(\sqrt{3})^{2}}{3}$	$\frac{(\sqrt{3})^{3}}{3}$

- Put these all together and you get the table of special trigonometric values, or the unit circle table:

	0°	30°	45°	60°	90°
\sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
\cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
\tan or $\left(\frac{\sin }{\cos }\right)$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	Undefined

23

Example-6-

Let $(-4,3)$ be a point on the terminal side of angle θ. Evaluate the six trigonometric
 functions of θ.

Solution

Find r.

$$
\begin{aligned}
& r=\sqrt{x^{2}+y^{2}} \\
& r=\sqrt{(-4)^{2}+3^{2}} \\
& r=5
\end{aligned}
$$

$$
\begin{array}{ll}
\sin \theta=\frac{y}{r}=\frac{3}{5} & \csc \theta=\frac{r}{y}=\frac{5}{3} \\
\cos \theta=\frac{x}{r}=-\frac{4}{5} & \sec \theta=\frac{r}{x}=-\frac{5}{4} \\
\tan \theta=\frac{y}{x}=-\frac{3}{4} & \cot \theta=\frac{y}{r}=-\frac{4}{3}
\end{array}
$$

Example-7-

If $(4,-8)$ is a point on the terminal side of angle α in standard position, evaluate the six trigonometric functions of α.

$$
\begin{aligned}
& \text { Answers } \\
& \begin{array}{ll}
\sin \alpha=-\frac{2 \sqrt{5}}{5} & \csc \alpha=-\frac{\sqrt{5}}{2} \\
\cos \alpha=\frac{\sqrt{5}}{5} & \sec \alpha=\sqrt{5} \\
\tan \alpha=-2 & \cot \alpha=-\frac{1}{2}
\end{array}
\end{aligned}
$$

25

We know that $\cos (t)$ is the x-coordinate of the corresponding point on the unit circle and $\sin (t)$ is the y-coordinate of the corresponding point on the unit circle. So:

$$
\begin{aligned}
& x=\cos t=\frac{1}{2} \\
& y=\sin t=\frac{\sqrt{3}}{2}
\end{aligned}
$$

Example-9-

A certain angle t corresponds to a point on the unit circle at $\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ as shown in Figure. Find cost and $\sin t$.

Solution:

$$
\cos (t)=-\frac{\sqrt{2}}{2}, \sin (t)=\frac{\sqrt{2}}{2}
$$

27

Example-10-

Find $\cos (90 \circ)$ and $\sin (90 \circ)$.

Solution:

Moving 900 counterclockwise around the unit circle from the positive x-axis brings us to the top of the circle, where the (x, y) coordinates are (0,1), as shown in Figure. Using our definitions of cosine and sine,

$$
\begin{aligned}
& x=\cos t=\cos \left(90^{\circ}\right)=0 \\
& y=\sin t=\sin \left(90^{\circ}\right)=1
\end{aligned}
$$

The cosine of 90° is 0 ; the sine of 90° is 1.

Example-11-

Find cosine and sine of the angle π.

Solution:
$\cos (\pi)=-1, \sin (\pi)=0$

29

Example-12-

For the following exercises, find the exact value of each trigonometric function.

1. $\sin \frac{\pi}{2}, \tan \frac{\pi}{6}$
2. $\sin \frac{\pi}{6}, \tan \frac{\pi}{4}$
3. $\sin \frac{\pi}{3}, \sec \frac{\pi}{6}$
4. $\sin \pi, \sec \frac{\pi}{4}$
5. $\cos \frac{\pi}{2}, \csc \frac{\pi}{6}$
6. $\sin \frac{3 \pi}{2}, \csc \frac{\pi}{4}$
7. $\cos \frac{\pi}{3}, \csc \frac{\pi}{6}$
8. $\cos \pi, \tan \pi$
9. $\sin \frac{\pi}{4}, \sec \frac{\pi}{6}$
10. $\cos \frac{\pi}{6}, \sec \frac{\pi}{3}$
11. $\cos \frac{\pi}{4}, \cot \frac{\pi}{6}$
12. $\cos 0, \tan 0$

Example-13-

For the following exercises, use the given point on the unit circle to find the value of all six trigonometric functions of t.

1. $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$
2. $\left(-\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$
3. $\left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$
4. $\left(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)$
5. $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$
6. $\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$
7. $\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$
8. $\left(\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)$
9. $(1,0)$
10. $(-1,0)$

31

Example-14-

Evaluate the six trigonometric functions for the given angles.
a. $\theta=\pi$
b. $\theta=\frac{\pi}{4}$
c. $\theta=\frac{4 \pi}{3}$
d. $\theta=\frac{11 \pi}{6}$

Solution

a. Use the angle on the unit circle to find the corresponding x and y-coordinates. For $\pi, x=-1$ and $y=0$.

$$
\begin{aligned}
& \sin \pi=y=0 \\
& \cos \pi=x=-1 \\
& \tan \pi=\frac{y}{x}=\frac{0}{-1}=0
\end{aligned}
$$

$$
\begin{aligned}
& \csc \pi=\frac{1}{y}=\frac{1}{0}=\text { undefined } \\
& \sec \pi=\frac{1}{x}=\frac{1}{-1}=-1 \\
& \cot \pi=\frac{x}{y}=\frac{-1}{0}=\text { undefined }
\end{aligned}
$$

b. Use the angle on the unit circle to find the corresponding x and y-coordinates.

For $\frac{\pi}{4}, x=\frac{\sqrt{2}}{2}$ and $y=\frac{\sqrt{2}}{2}$

$$
\begin{aligned}
& \sin \frac{\pi}{4}=y=\frac{\sqrt{2}}{2} \\
& \cos \frac{\pi}{4}=x=\frac{\sqrt{2}}{2} \\
& \tan \frac{\pi}{4}=\frac{y}{x}=\frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}}=1
\end{aligned}
$$

$$
\begin{aligned}
& \csc \frac{\pi}{4}=\frac{1}{y}=\frac{1}{\frac{\sqrt{2}}{2}}=\sqrt{2} \\
& \sec \frac{\pi}{4}=\frac{1}{x}=\frac{1}{\frac{\sqrt{2}}{2}}=\sqrt{2} \\
& \cot \frac{\pi}{4}=\frac{x}{y}=\frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}}=1
\end{aligned}
$$

c. Use the angle on the unit circle to find the corresponding x and y-coordinates.

For $\frac{4 \pi}{3}, x=-\frac{1}{2}$ and $y=-\frac{\sqrt{3}}{2}$

$$
\begin{array}{ll}
\sin \frac{4 \pi}{3}=y=-\frac{\sqrt{3}}{2} & \csc \frac{4 \pi}{3}=\frac{1}{y}=\frac{1}{-\frac{\sqrt{3}}{2}}=-\frac{2 \sqrt{3}}{3} \\
\cos \frac{4 \pi}{3}=x=-\frac{1}{2} & \sec \frac{4 \pi}{3}=\frac{1}{x}=\frac{1}{-\frac{1}{2}}=-2 \\
\tan \frac{4 \pi}{3}=\frac{y}{x}=\frac{-\frac{\sqrt{3}}{2}}{-\frac{1}{2}}=\sqrt{3} & \cot \frac{4 \pi}{3}=\frac{x}{y}=\frac{-\frac{1}{2}}{-\frac{\sqrt{3}}{2}}=\frac{\sqrt{3}}{3}
\end{array}
$$

d. Use the angle on the unit circle to find the corresponding x and y-coordinates.

For $\frac{11 \pi}{6}, x=\frac{\sqrt{3}}{2}$ and $y=-\frac{1}{2}$
$\sin \frac{11 \pi}{6}=y=-\frac{1}{2}$
$\cos \frac{11 \pi}{6}=x=\frac{\sqrt{3}}{2}$
$\tan \frac{11 \pi}{6}=\frac{y}{x}=\frac{-\frac{1}{2}}{\frac{\sqrt{3}}{2}}=-\frac{\sqrt{3}}{3}$

$$
\begin{aligned}
& \csc \frac{11 \pi}{6}=\frac{1}{y}=\frac{1}{-\frac{1}{2}}=-2 \\
& \sec \frac{11 \pi}{6}=\frac{1}{x}=\frac{1}{\frac{\sqrt{3}}{2}}=\frac{2 \sqrt{3}}{3} \\
& \cot \frac{11 \pi}{6}=\frac{x}{y}=\frac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}}=-\sqrt{3}
\end{aligned}
$$

References

- Thomas-Calculus-14 ${ }^{\text {th }}$-Edition
- Internet sources

35

