
Tishk International University
Science Faculty
IT Department

Open Source OS (Linux)

4th Grade - Fall Semester 2020-2021

Lecture 3:
Users, Groups, and Permissions Management

Instructor: Alaa Ghazi

Lecture 3
Users, Groups and Permissions

Management

Introduction
• Linux uses groups to help you manage users,

set permissions on those users.
• Normally Linux computers have two user

accounts—
1. root account, which is the super user that can

access everything on the PC, make system
changes, and administer other users.

2. normal users

User Accounts Files

– /etc/passwd This file contains the user account
information for the system.

– /etc/shadow This file contains encrypted
passwords for the user accounts.

– /etc/group This file contains the list of groups.
– /etc/gshadow each line in this file represents a

record for a single group.

The Superuser (root)
• By default, one account has elevated privileges to issue any

command, access any file, and perform every function, it is
the Superuser, which is called root

• root User ID is 0 and group number is 0
• Why root account should be limited?

– Inexperienced users can cause serious harm
– Use of root for non-privileged tasks unnecessary and can be

open to attack
– Security and privacy violations – root can look at anyone’s files

• Recommended Settings for root:
Disable root account locally and remotely
 If not then disable or limit what root can do remotely
Ensure a strong password

Superuser Privileges

• What usually works best is short periods of
superuser privilege, only when necessary

• Obtain privileges, complete task, relinquish
privileges

• Most common ways are su and sudo
• Some Linux distributions such as Ubuntu

disable the root account by default
• Must rely on sudo to obtain privilege.

su

• Short for substitute or switch user
• Syntax: su [options]

• After issuing command, prompted for that
root’s password

• A new shell opened with the superuser
privileges

• Once done issuing commands, must type exit

sudo

• Allows user to issue a single command as root
• Syntax:
sudo command

• In Ubuntu the root account is disabled by default.
• In Ubuntu the user created during installation will

have certain administrative privileges, since it will
be member of sudo group by default so it can run
commands with superuser privileges

• The files and folders created with sudo will be
owned by root

Creating a User
Syntax: adduser username
example: adduser azad

• You will be asked for certain information which
you can keep empty except full name (use same
username in this course) and provide password.
(recommended to use 12345)

• Whenever a new user is created a group with
same name will be created automatically.

Creating and Managing User and Groups

Deleting a User

• Syntax: userdel –r username
• example: userdel –r azad
Use the –r option in the command line to

remove the home directory when you delete
the user.

Creating/Deleting a Group
• To create a group use groupadd like below
• Syntax:

groupadd options groupname
• Options:
–g Specifies a GID for the new group.
–p Specifies a password for the group.
–r Specifies that the group being created is a system group

example: groupadd groupc

To delete a group use groupdel like below

Syntax: groupdel group_name
example: groupdel test2

Add/Remove a User to/from a Group
• To add an existing user account to a group on your system, use

the usermod command,
sudo usermod -a -G groupname username
• For example, to add the user azad to the group groupc , use

the following command:
sudo usermod -a -G groupc azad
• To view the groups the current user account is assigned to,

run the groups command. You’ll see a list of groups.

groups
• To remove a user from a group, use the gpasswd command

with the -d option as follows.

sudo gpasswd -d username groupname

Managing ownership

Anytime a user creates a new file or directory, his or
her user account is assigned as that file or directory’s
“owner.” and the group corresponding to that user
will be the file or directory’s “group owner.”
For example, suppose the azad user logs in to her
Linux system and creates a file named azadfile1 in
home directory. Because he created this file, azad is
automatically assigned ownership of azadfile1.

How ownership works

• You can specify a different user and/or group as the
owner of a given file or directory. To change the
user who owns a file, you must use superuser
privileges with sudo command.

• Using chown
 Using chgrp
 You can also view file ownership from the

command line using the ls –l command

Using chown
• The chown utility can be used to change the user

or group that owns a file or directory.
Syntax chown user file or directory.
Example: If I wanted to change the file’s owner to the
azad user, I would enter

chown azad myfile
Note: You can use the –R option with chown to change
ownership on many files at once recursively.

Using chgrp

• In addition to chown, you can also use chgrp to
change the group that owns a file or directory.

• Syntax: chgrp group file (or directory)
• Example: chgrp student myfile

File Permissions
•On a Linux system, each file and directory is assigned
access rights for the owner of the file, the members of
a group of related users, and everybody else. Rights
can be assigned to read a file, to write a file, and to
execute a file (i.e., run the file as a program).
•Linux controls access to files on the computer through
a system of “permissions.”
•Permissions are settings configured to control
exactly how files on your computer are accessed and
used.
•To see the permission settings for a file, we can use
the ls -l command.

File Permissions

File Permissions

File and Directory
Access Permissions

chmod – changing file permissions
• The chmod command is used to change the permissions of a

file or directory. To use it, you specify the desired permission
settings and the file or files that you wish to modify. There are
two ways to specify the permissions. In this lesson we will
focus on one of these, called the octal notation method.

• Here's how it works:
rwx rwx rwx = 111 111 111
rw- rw- rw- = 110 110 110
rwx --- --- = 111 000 000

• and so on... rwx = 111 in binary = 7 rw- = 110 in binary = 6 r-x =
101 in binary = 5 r-- = 100 in binary = 4

• Now, if you represent each of the three sets of permissions
(owner, group, and other) as a single digit, you have a pretty
convenient way of expressing the possible permissions
settings. For example, if we wanted to set myfile to have read
and write permission for the owner, but wanted to keep the file
private from others, we would:

sudo chmod 600 myfile

Files common settings
Value Meaning

777
(rwxrwxrwx) No restrictions on permissions. Anybody may do anything.
Generally not a desirable setting.

755
(rwxr-xr-x) The file's owner may read, write, and execute the file. All others may
read and execute the file. This setting is common for programs that are used by
all users.

700
(rwx------) The file's owner may read, write, and execute the file. Nobody else
has any rights. This setting is useful for programs that only the owner may use
and must be kept private from others.

666 (rw-rw-rw-) All users may read and write the file.

644
(rw-r--r--) The owner may read and write a file, while all others may only read
the file. A common setting for data files that everybody may read, but only the
owner may change.

600
(rw-------) The owner may read and write a file. All others have no rights. A
common setting for data files that the owner wants to keep private.

Directory Permissions
• The chmod command can also be used to

control the access permissions for
directories. Again, we can use the octal
notation to set permissions, but the meaning
of the r, w, and x attributes is different:
r - Allows the contents of the directory to be listed if

the x attribute is also set.

w - Allows files within the directory to be created,
deleted, or renamed if the x attribute is also set.

x - Allows a directory to be entered (i.e. cd dir).

