
L e c t u r e 6

Programming I

Tishk International University
IT Department
Course Code: IT-117

hemin.ibrahim@tiu.edu.iq

Do-While & Nested Loops

Hemin Ibrahim
Fall 2023

Outline
• The do-while loop
• While vs do-while
• Sentinels
• Nested Loops

Objectives
• Understand and utilize the do-while loop for executing code repeatedly, ensuring at

least one execution.

• Differentiate between while and do-while loops, understanding their distinct

execution methods and choosing the appropriate loop based on program needs.

• Learn about sentinels, special values marking the end of input or signaling conditions

within loops, ensuring proper loop termination and effective data handling.

• Grasp nested loops' concept for creating intricate patterns, traversing multi-

dimensional structures, and solving problems requiring repetitive operation.

• The do-while loop is a posttest loop.
• It tests its expression after each iteration.
• It always executes at least one iteration, even if the expression is initially false.
• While loops test their expression before the first iteration, whereas do-while loops

test their expression after the first iteration.
• Format of a do-while loop with a single statement in its body:

The do-while Loop

The do-while Loop

Example #1

Output

Example #2

Output

while vs do while

while vs do while

while vs do while

0 loop1 loop

Sentinels
• A sentinel is a special value denoting the end of a list of values.
• It is distinct from other values in the list, serving as a signal that no more values

need to be entered.
• When the user inputs the sentinel value, the loop terminates.

Output

Deciding Which Loop to Use?
• While Loop:

• Conditional loop repeating as long as a condition exists.
• Pretest loop: It checks the condition before the iteration.
• Suitable when the loop shouldn't iterate if the condition is false initially.

• Do-While Loop:
• Conditional loop that iterates at least once.
• Posttest loop: It checks the condition after the first iteration.
• Ideal for scenarios where you always want the loop to run at least once, like

repeating a menu.
• For Loop:

• Pretest loop with built-in expressions for initialization, testing, and updating.
• Convenient for controlling iterations using a counter variable.

Tips for using loops
• Set Clear Objectives: Before using a loop, define the purpose and goals of the

loop.
• Choose the Right Loop Type: Understand the different types of loops available and

choose the one that best fits your task.
• Use a for loop for a known number of iterations,
• a while loop for indefinite iterations with a condition, and
• a do-while loop when you want to ensure the loop body executes at least

once.
• Initialize and Update Variables Carefully: Initialize and update loop variables

meticulously for accuracy.
• Use Break wisely: Utilize the break statement to exit a loop prematurely when a

specific condition is met.

Nested Loops
• Definition:

• Nested loops are loops within loops.
• Structure:

• Outer loop controls the iteration over rows.
• Inner loop manages the iteration over columns.

• Usage:
• Create complex patterns and structures.
• Traverse multi-dimensional arrays.
• Solve problems requiring repetitive operations.

• Example:
• Printing patterns, such as squares, triangles, or rectangles.
• Accessing elements in matrices or multi-dimensional arrays.

Nested Loops - Example #1

Output

Nested Loops - Example #2

Output

Nested Loops - Example #3

Output

Nested Loops - Example #3 (Another way)

Output

