

1

Question Samples

Q1. What is a polynomial function?
Q2. Which of the following functions are polynomial functions?
(a) $f(x)=4 x^{2}+2$
(b) $f(x)=3 x^{3}-2 x+\sqrt{x}$
(c) $f(x)=12-4 x^{5}+3 x^{2}$
(d) $f(x)=\sin x+1$
(e) $f(x)=3 x^{12}-2 / x$
(f) $f(x)=3 x^{11}-2 x^{12}$

Q3. Write down one example of each of the following types of polynomial function:
(a) cubic
(b) linear
(c) quartic
(d) quadratic

Q4. Sketch the graphs of the following functions on the same axes:
(a) $f(x)=x^{2}$
(b) $f(x)=4 x^{2}$
(c) $f(x)=-x^{2}$
(d) $f(x)=-4 x^{2}$

Q5. Consider a function of the form $f(x)=x^{2}+a x$, where a represents a real number. The graph of this function is represented by a parabola.
(a) When $a>0$, what happens to the parabola as a increases?
(b) When $a<0$, what happens to the parabola as a decreases?

Q6. Write down a polynomial function with roots:
(a) $1,2,3,4$
(b) $2,-4$
(c) $12,-1,-6$

Q7. Write down the roots and identify their multiplicity for each of the following functions:
(a) $\quad f(x)=(x-2)^{3}(x+4)^{4}$
(b) $\quad f(x)=(x-1)(x+2)^{2}(x-4)^{3}$

Q8. Sketch the following functions:
(a) $f(x)=(x-2)^{2}(x+1)$
(b) $\quad f(x)=(x-1)^{2}(x+3)$

Q9. Match each polynomial function with its graph. Explain your reasoning.
a. $f(x)=x^{3}-x$
b. $f(x)=-x^{3}+x$
c. $f(x)=-x^{4}+1$
d. $f(x)=x^{4}$
e. $f(x)=x^{3}$
f. $f(x)=x^{4}-x^{2}$

3
A.

B.

C.

D.

E.

F.

Q10. Decide whether each function is a polynomial function. If so, write it in standard form and state its degree, type, and leading coefficient.
a. $f(x)=-2 x^{3}+5 x+8$
b. $g(x)=-0.8 x^{3}+\sqrt{2} x^{4}-12$
c. $h(x)=-x^{2}+7 x^{-1}+4 x$
d. $k(x)=x^{2}+3^{x}$

Q11. Graph
(a) $f(x)=-x^{3}+x^{2}+3 x-3$ and
(b) $f(x)=x^{4}-x^{3}-4 x^{2}+4$

Q12. Which one doesn't belong? Which function does not belong with the other three? Explain your reasoning.

$$
f(x)=7 x^{5}+3 x^{2}-2 x
$$

$$
h(x)=-3 x^{4}+5 x^{-1}-3 x^{2}
$$

$$
g(x)=3 x^{3}-2 x^{8}+\frac{3}{4}
$$

$$
k(x)=\sqrt{3} x+8 x^{4}+2 x+1
$$

5

Q13. Decide whether the function is a polynomial function. If so, write it in standard form and state its degree, type, and leading coefficient.

$$
\begin{aligned}
& f(x)=-3 x+5 x^{3}-6 x^{2}+2 \\
& p(x)=\frac{1}{2} x^{2}+3 x-4 x^{3}+6 x^{4}-1 \\
& f(x)=9 x^{4}+8 x^{3}-6 x^{-2}+2 x \\
& g(x)=\sqrt{3}-12 x+13 x^{2} \\
& h(x)=\frac{5}{3} x^{2}-\sqrt{7} x^{4}+8 x^{3}-\frac{1}{2}+x \\
& h(x)=3 x^{4}+2 x-\frac{5}{x}+9 x^{3}-7
\end{aligned}
$$

Q14. Sketch a graph of the following polynomial:

$$
\begin{aligned}
& f(x)=(x-3)(x+2)(x-5) \\
& f(x)=(x-3)(x+2)(x-5)^{2} \\
& f(x)=x^{5}-9 x^{3}
\end{aligned}
$$

Q18. Finding the x-Intercepts of a Polynomial Function by Factoring

$$
f(x)=x^{6}-3 x^{4}+2 x^{2}
$$

Q19. Finding the x-Intercepts of a Polynomial Function by Factoring

$$
f(x)=x^{3}-5 x^{2}-x+5
$$

Q20. Finding the y - and x-Intercepts of a Polynomial in Factored Form

$$
g(x)=(x-2)^{2}(2 x+3)
$$

Q21. Finding the y - and x-Intercepts of a Polynomial in Factored Form

$$
h(x)=x^{3}+4 x^{2}+x-6
$$

9

$$
\begin{aligned}
& \text { Q22. Decide whether the function is a polynomial function. If ss } \\
& \text { form and state its degree, type, and leading coeffi cient. } \\
& \qquad f(x)=-3 x+5 x^{3}-6 x^{2}+2 \\
& p(x)=\frac{1}{2} x^{2}+3 x-4 x^{3}+6 x^{4}-1 \\
& f(x)=9 x^{4}+8 x^{3}-6 x^{-2}+2 x \\
& g(x)=\sqrt{3}-12 x+13 x^{2} \\
& h(x)=\frac{5}{3} x^{2}-\sqrt{7} x^{4}+8 x^{3}-\frac{1}{2}+x \\
& h(x)=3 x^{4}+2 x-\frac{5}{x}+9 x^{3}-7
\end{aligned}
$$

Q23. Identify the leading coefficient, degree, and end behavior.

1. $f(x)=5 x^{2}+7 x-3$

Degree:
Leading Coeff:
End Behavior:
2. $y=-2 x^{2}-3 x+4$

Degree:
Leading Coeff:
End Behavior:
3. $g(x)=x^{3}-9 x^{2}+2 x+6$

Degree:
Leading Coeff:
End Behavior:
4. $y=-7 x^{3}+3 x^{2}+12 x-1$
Degree:
Leading Coeff:
End Behavior:
5. $h(x)=-2 x^{7}+5 x^{4}-3 x$

Degree:
Leading Coeff:
End Behavior:
6. $g(x)=8 x^{3}+4 x^{2}+7 x^{4}-9 x$

Degree:
Leading Coeff:
End Behavior:

Identify the end behavior. Justify your answer.
7. $f(x)=4 x^{5}-3 x^{4}+2 x^{3}$
8. $y=-x^{4}+x^{3}-x^{2}+1-1$
9. $h(x)=3 x^{6}-7 x^{4}-2 x^{9}$

11

\square
Q24. Identify whether the function graphed has an odd or even degree and a positive or negative leading coefficient. Justify your answer.
10.
deg:
coeff:
justify:
 justify:

12.
deg:
coeff:
justify:
13.
deg:
coeff:
justify:

14.
deg:
coeff: justify:

15.
deg:
coeff:
justify:

Q25. Determine the degree of the polynomial in factored form. Then demonstrate that you are correct by writing the polynomial in standard form.

1. $y=(x+3)\left(x^{2}-5 x-4\right)$
2. $y=x^{3}(x-2)^{2}(x+1)$
3. $y=x(x+3)(x-1)^{2}$

13

1. $y=(x-2)(x+5)(x-1)$
a) degree \& leading coefficient
b) end behavior
c) x-intercepts with multiplicity
d) y-intercept
e) How many distinct x-intercepts?
f) How many roots are there?
2. $f(x)=x^{2}(x+2)(x-7)$
a) degree \& leading coefficient
b) end behavior
c) x-intercepts with multiplicity
d) y-intercept
e) How many distinct x-intercepts?
f) How many zeros are there?

Q27. Sketch graphs of the polynomial functions. Label all x and y intercepts.

$$
y=(x-1)(x+3)(x-4) \quad g(x)=-x^{2}(x-3)
$$

$f(x)=2(x+4)^{2}(x-2)$

$$
f(x)=-3(x+1)(x+2)(x-4)
$$

15
$y=x^{2}(x+5)(x-3)$

$h(x)=-(x+2)(x-3)^{2}(x-1)$

$$
h(x)=-(x+2)(x-3)^{2}(x-1)
$$

Q28. Write an equation for the polynomial graph shown and determine if the leading coefficient, a is + or - .

2.

17

Q29. For the following exercises, find the x - or t - intercepts of the polynomial functions.

1. $C(t)=2(t-4)(t+1)(t-6)$
2. $C(t)=3(t+2)(t-3)(t+5)$
3. $C(t)=4 t(t-2)^{2}(t+1)$
4. $C(t)=2 t(t-3)(t+1)^{2}$
5. $f(x)=x^{4}-x^{2}$
6. $f(x)=x^{3}+x^{2}-20 x$
7. $f(x)=x^{3}+6 x^{2}-7 x$
8. $f(x)=x^{3}+x^{2}-4 x-4$
9. $f(x)=x^{3}+2 x^{2}-9 x-18$
10. $f(x)=2 x^{3}-x^{2}-8 x+4$

Q30. For the following exercises, find the zeros and give the multiplicity of each.

1. $f(x)=(x+2)^{3}(x-3)^{2}$

2. $f(x)=x^{2}(2 x+3)^{5}(x-4)^{2}$
3. $f(x)=x^{3}(x-1)^{3}(x+2)$
4. $f(x)=x^{2}\left(x^{2}+4 x+4\right)$
5. $f(x)=(2 x+1)^{3}\left(9 x^{2}-6 x+1\right)$
6. $f(x)=(3 x+2)^{5}\left(x^{2}-10 x+25\right)$
7. $f(x)=x\left(4 x^{2}-12 x+9\right)\left(x^{2}+8 x+16\right)$
8. $f(x)=x^{6}-x^{5}-2 x^{4}$
9. $f(x)=3 x^{4}+6 x^{3}+3 x^{2}$
10. $f(x)=4 x^{5}-12 x^{4}+9 x^{3}$
11. $f(x)=2 x^{4}\left(x^{3}-4 x^{2}+4 x\right)$
12. $f(x)=4 x^{4}\left(9 x^{4}-12 x^{3}+4 x^{2}\right)$

Q31. For the following exercises, graph the polynomial functions. Note x-and y intercepts, multiplicity, and end behavior.

1. $f(x)=(x+3)^{2}(x-2)$
2. $g(x)=(x+4)(x-1)^{2}$
3. $h(x)=(x-1)^{3}(x+3)^{2}$
4. $k(x)=(x-3)^{3}(x-2)^{2}$
5. $m(x)=-2 x(x-1)(x+3)$
6. $n(x)=-3 x(x+2)(x-4)$

19

Q32. For the following exercises, graph the polynomial functions. Note x-and y intercepts, multiplicity, and end behavior.

1. Degree 3. Zeros at $\mathrm{x}=-2, \mathrm{x}=1$, and $\mathrm{x}=3$. y -intercept at $(0,-4)$.
2. Degree 3. Zeros at $x=-5, x=-2$, and $x=1$. y-intercept at $(0,6)$
3. Degree 5 . Roots of multiplicity 2 at $x=3$ and $x=1$, and a root of multiplicity 1 at $x=-3$. y-intercept at $(0,9)$
4. Degree 4. Root of multiplicity 2 at $x=4$, and a roots of multiplicity 1 at $x=1$ and $x=-2$. y-intercept at $(0,-3)$.
5. Degree 5 . Double zero at $x=1$, and triple zero at $x=3$.Passes through the point $(2,15)$.
6. Degree 3 . Zeros at $x=4, x=3$, and $x=2$. y-intercept at $(0,-24)$.
7. Degree 3 . Zeros at $x=-3, x=-2$ and $x=1$. y-intercept at $(0,12)$.
8. Degree 5 . Roots of multiplicity 2 at $x=-3$ and $x=2$ and a root of multiplicity 1 at $x=-2$. y-intercept at $(0,4)$.
9. Degree 4. Roots of multiplicity 2 at $x=12$ and roots of multiplicity 1 at $x=6$ and $x=-2$. y-intercept at $(0,18)$.
10. Double zero at $x=-3$ and triple zero at $x=0$. Passes through the point $(1,32)$.

References

- Thomas-Calculus-14th-Edition
- Internet sources

21

