
Week 1:
Course Introduction,
Dart packages, Audio Player
Packages and Functions

Presented By : Lect. Mohammad Salim

2023-2024 Spring Term

IT-3142 OOP-II Flutter for Cross-Platfrom Mobile Apps

1

Syllabus

2

Prerequisites

� Passing Mobile Apps is important because of these some preferred
prerequisites for your Advanced Mobile Apps course:

1.Fundamental Programming Knowledge: Students should be comfortable with
basic programming concepts such as variables, loops, conditionals, and
functions.

2.Introductory Dart Experience: A foundational understanding of Dart
programming language, given that Flutter is Dart-based.

3.Basic Flutter Knowledge: Familiarity with Flutter’s basic widgets and concepts
like the widget tree, stateless and stateful widgets, and how to create a simple
Flutter application.

4.Understanding of Asynchronous Programming: Knowledge of async-await,
Futures, and Streams in Dart, as they are crucial for handling operations like
API calls.

5.Version Control Systems: Basic understanding of version control with Git and
platforms like GitHub for code collaboration and versioning.

6.Software Development Tools: Experience using IDEs like Android Studio or VS
Code for app development.

7.Object-Oriented Programming (OOP): Since Dart is an object-oriented
language, students should be familiar with OOP principles.

8.Basic Command Line Usage: Comfort with using command-line interfaces, as
Flutter often requires running shell commands. 3

Grading

4

5

What are
Flutter & Dart
Packages?

� In order to be able to play sounds in our Xylophone App, we are going
to use a Flutter package for this functionality. But what is a package ?

� Flutter packages are open source libraires of code that other people
have created which you can incoporate into your project with minimal
effort.

� Flutter supports using shared packages contributed by other
developers to the Flutter and Dart ecosystems. This allows quickly
building an app without having to develop everything from scratch.

� Packages At a minimum, a Dart package is a directory containing a
pubspec file.

� Additionally, a package can contain dependencies (listed in the
pubspec), Dart libraries, apps, resources, tests, images, and examples.

� The pub.dev site lists many packages—developed by Google engineers
and generous members of the Flutter and Dart community— that you
can use in your

6

https://pub.dev/

What are
Flutter & Dart
Packages?

What are Flutter & Dart Packages?

� Flutter and Dart packages significantly enrich the app development
ecosystem, offering pre-made solutions that speed up the building
process.

� Pub.dev hosts these packages, ensuring they undergo a vetting
process for reliability and security.

� This system enables developers to utilize community and official
resources confidently, integrating sophisticated functionalities with
minimal effort.

� Understanding how to effectively search for and evaluate packages is
key to leveraging the full potential of this ecosystem in your
applications.

7

Packages

8

Packages

What is the difference between a package and a plugin?
� A plugin is a type of package—the full designation is plugin package, which is
generally shortened to plugin.

� Existing packages enable many use cases—for example, making network
requests (http), custom navigation/route handling (fluro), integration with
device APIs (url_launcher and battery), and using third-party platform SDKs
like Firebase (FlutterFire).

� Searching for packages: Packages are published to pub.dev.
When to use packages VS plugins?
� Use packages when you need to include Dart code, libraries, or assets that
do not require native platform interaction.

� Examples include implementing algorithms, working with data structures,
or utilizing third-party services with pure Dart code, like HTTP requests
(http package) or date formatting (intl package).

� Use plugins when you need to interact with native platform functionalities
that Dart alone cannot handle, requiring code that uses the native SDKs of
iOS, Android, or other platforms.

� Examples include accessing the device's camera (camera plugin), GPS
location services (location plugin), or integrating with hardware features
like Bluetooth (flutter_blue plugin) and sensors.

Next Slide shows an example of adding a CSS package to an app.

9

https://docs.flutter.dev/cookbook/networking/fetch-data
https://pub.dev/packages/fluro
https://pub.dev/packages/url_launcher
https://pub.dev/packages/battery
https://github.com/flutter/plugins/blob/master/FlutterFire.md
https://pub.dev/

Adding a
package!

10

Add Package 2

11

How to Play
Sound Across
Platforms?

12

How to Play
Sound Across
Platforms?

13

How to Play
Sound Across
Platforms?

14

How to Play
Sound Across
Platforms?

15

How to Play
Multiple
Sounds?

16

Dart Functions

17

Dart Functions

� In the Xylophone app, functions are utilized to modularize and simplify
code, making it more readable and easier to maintain.

� Dart's first-class function support allows functions to be passed as
arguments, enhancing code flexibility and reusability.

� By This feature is particularly useful in the app for creating reusable
components, such as buttons that play different sounds.

� Abstracting functionality into functions, developers can easily adjust and
expand their apps without repetitive code, demonstrating the power of
Dart's function capabilities in practical applications.

18

Challenge

19

Updating
the UI of
Our App

� Try using Expaneded Widget to
improve the design.

� The Expanded widget in Flutter is
crucial for creating responsive UIs
that adapt to various screen sizes.

� It works by letting child widgets
flexibly occupy the available
space, adjusting their size
according to the surrounding
layout.

� You should cleanup the codeby
creating a function to call
everytime you want to build a key
instead of writing the key code 7
times!

20

Updating
the UI of
Our App

21

�This widget is particularly
useful in applications like the
Xylophone app, where you
want the UI elements to be
evenly spaced and visually
consistent across devices.

�By utilizing Expanded,
developers can ensure their
app's interface remains
intuitive and accessible,
regardless of the device's
screen dimensions.

Dart Functions
Challenge

22

Refactor and
Clean Up Our
Code

23

Refactor and
Clean Up Our
Code

24

� When refactoring and cleaning up your code, prioritize readability and
maintainability.

� This involves organizing code logically, such as grouping related functions
together, and choosing descriptive, meaningful names for variables and
functions.

� These practices not only make your code more understandable to others
(and your future self) but also facilitate easier updates and debugging.

� This approach ensures that your code remains scalable, efficient, and less
prone to errors, contributing to the overall quality and longevity of your
application.

� In refactoring the Xylophone app, it's advisable to use widgets instead of
functions for creating xylophone keys.

� Because using widgets leverages Flutter's reactive style, improving the app's
performance and compatibility with the framework's architecture.

� Widgets provide a more structured way to manage the UI and state,
enhancing code readability and maintainability.

� They also facilitate the reuse of UI components and make it easier to apply
themes and styles consistently across the app.

� This practice aligns with Flutter's design principles, leading to a more
efficient and scalable application.

Customize It!

� Now that you've built the app, it's time to customize it to make it your own.

� Explore your creativity in app development by making the Xylophone app
uniquely yours.

� Consider adding unique sound sets, vibrant color schemes, and interactive
elements to enhance your app.

� This approach not only sets your project apart but also deepens your
understanding of Flutter's capabilities, encouraging innovative thinking in
design.

� There's a large collection of free sounds at https://freesound.org/

� You can download collections of various sounds, e.g. birds/ cats
sounds/atmospheric sounds.

� We emphasize the significance of user experience and interface design in
customization.

� Maybe you'll want to build a personal sound track to turn your life into a
movie.

� Want to investigate a strange movement in your backyard? Click on the tense
string ensemble. Hit with a flash of inspiration? Click on the corresponding
sound effect.

� Perhaps a bit too much of a narcissistic app idea, I'll leave you to come up with
the ideas to customise the app.

25

https://freesound.org/

Summary � Today, we dove into Flutter, learning more about its packages and
plugins.

� We saw how to pick and use an Audio Player package to add cool
features to our apps.

� We also got a closer look at Dart Functions, discovering how they make
our code cleaner and easier to read, especially when we use functions
and parameters smartly.

� You got to apply what we learned by starting a Xylophone app.

� This project isn't just about practicing coding; it's about seeing how all
these pieces come together in a real app you're building.

� Remember, this is just the start. Keep playing around with new
packages, tweaking your app's look, and cleaning up your code. And
don't forget to join in on the fun with the Flutter community.

� Share what you make, pick up tips from others, and maybe help out
someone else. Keep being curious and creative – it's the best way to
learn and make awesome stuff.

26

