Flutter for Cross-Platfrom Mobile Apps

International University

WEeics: P
Sourse Introcuction, -
Packages and Functions 220

Presented By : Lect. Mohammad Salim

2023-2024 Spring Term

International University

Syllabus

Week Hour
1 2
2 2
3 2
4 2
5 2
6 2
7 2
8 2
9 2
10 2
1 2
12 2
13 2
14 2
15 2
16 2

Date

Topic
Xylophone App- Dart packages, audio player packages and Functions

Climate App — Location data, http package, async/await and future, exceptions,
JSON, and pass data to widgets

Climate App — Location data, http package, async/await and future, exceptions,
JSON, and pass data to widgets

Chat App: Integrate Flutter Apps with Firebase(Hero animation, Dart mixins,
Firestore, authentication, scrolling listview, Dart Stream

Chat App: Integrate Flutter Apps with Firebase(Hero animation, Dart mixins,
Firestore, authentication, scrolling listview, Dart Stream

Chat App: Integrate Flutter Apps with Firebase(Hero animation, Dart mixins,
Firestore, authentication, scrolling listview, Dart Stream

Midterm Exam
TodolTApp- State Management and provider package

TodolTApp- State Management and provider package
Sensors (Accelerometer, Gyroscope, and Magnetometer)

Publishing Apps to Apps Store (Android) and (iOS)
VCS Version Control System Integration (Git and GitHub)

Localization (Multi-languages support)
Testing Flutter Apps

Final Exam
Final Exam

Prerequisites

* Passing Mobile Apps is important because of these some preferred
prerequisites for your Advanced Mobile Apps course:

1.Fundamental Programming Knowledge: Students should be comfortable with
basic programming concepts such as variables, loops, conditionals, and
functions.

2.Introductory Dart Experience: A foundational understanding of Dart
programming language, given that Flutter is Dart-based.

3.Basic Flutter Knowledge: Familiarity with Flutter’s basic widgets and concepts
like the widget tree, stateless and stateful widgets, and how to create a simple
Flutter application.

4.Understanding of Asynchronous Programming: Knowledge of async-await,
Futures, and Streams in Dart, as they are crucial for handling operations like
API calls.

5.Version Control Systems: Basic understanding of version control with Git and
platforms like GitHub for code collaboration and versioning.

6.Software Development Tools: Experience using IDEs like Android Studio or VS
Code for app development.

7.0bject-Oriented Programming (OOP): Since Dart is an object-oriented
language, students should be familiar with OOP principles.

8.Basic Command Line Usage: Comfort with using command-line interfaces, as
Flutter often requires running shell commands.

Tishk

International University

Grading

COURSE EVALUATION CRITERIA
Method

Quiz
Homework
Project
Midterm Exam
Final Exam
Total

Examinations: True-False, Fill in the Blanks, Multiple Choices, Short
Answers, Matching, , ,

Quantity

1
1
1
1
1

Percentage (%)
10
5
15
30
40
100

International University

Xylophone

Diving Deeper into Dart Programming

4% Flutter Packages

Search Flutter-compatible packages

FLUTTER WEB ALL

Flutter” makes it easy and fast to build beautiful mobile apps
for i0S and Android.

What We’ll Make

I londonappbrewery / xylophone-flutter

<> Code 1 Issues 0 11 Pull requests 0 1"l Projects 0 W1 Insights
Starter code for the Xyloph: project in the C Flutter
® 2 commits ¥ 1branch

© Oreleases 42 1 contributor

Branch: masterv | New pull request

A angelabauer update background

& android initial
i assets update background
W ios initial
. lib update background
[.gitignore initial
[.metadata initial
) README.md initial
& pubspec.yaml update background

E3 README.md

Find File Clone or download ~

Latest commit 753682 3 hours ago
4 hours ago
3 hours ago
4 hours ago
3 hours ago
4 hours ago
4 hours ago
4 hours ago

3 hours ago

e T. h k
HLTIV: IS
International University

What are
Flutter & Dart

Packages?

* In order to be able to play sounds in our Xylophone App, we are going

to use a Flutter package for this functionality. But what is a package ?

- Flutter packages are open source libraires of code that other people

have created which you can incoporate into your project with minimal
effort.

* Flutter supports using shared packages contributed by other

developers to the Flutter and Dart ecosystems. This allows quickly
building an app without having to develop everything from scratch.

- Packages At a minimum, a Dart package is a directory containing a

pubspec file.

- Additionally, a package can contain dependencies (listed in the

pubspec), Dart libraries, apps, resources, tests, images, and examples.

* The pub.dev site lists many packages—developed by Google engineers

and generous members of the Flutter and Dart community— that you
can use in your

https://pub.dev/

o
* —_ L4
C
)\ I s
%
)
3

International University

What are
Flutter & Dart

Packages?

What are Flutter & Dart Packages?

* Flutter and Dart packages significantly enrich the app development
ecosystem, offering pre-made solutions that speed up the building
process.

* Pub.dev hosts these packages, ensuring they undergo a vetting
process for reliability and security.

* This system enables developers to utilize community and official
resources confidently, integrating sophisticated functionalities with
minimal effort.

- Understanding how to effectively search for and evaluate packages is
key to leveraging the full potential of this ecosystem in your

applications.

»ub.dartlang.org/flutter #

International University , @ cettngStarted: Fiutter v Web & Server v

% Flutter Packages
Search Flutter-compatible packages n

FLUTTER WEB ALL

Flutter” makes it easy and fast to build beautiful mobile apps
for iOS and Android.

Top Flutter-compatible packages

shared_preferences url_launcher path_provider

FLUTTER FLUTTER FLUTTER
Flutter plugin for reading and writing simple Flutter plugin for launching a URL on Android Flutter plugin for getting commonly used
key-value pairs. Wraps NSUserDefaults on i0S and i0S. Supports web, phone, SMS, and email locations on the Android & iOS file systems,
and SharedPreferences on Android. schemes. such as the temp and app data directories.
image_picker cloud_firestore sqflite

FLUTTER FLUTTER FLUTTER
Flutter plugin for selecting images from the Flutter plugin for Cloud Firestore, a cloud- Flutter plugin for SQLite, a self-contained,

Packages

Tishk

International University

What is the difference between a package and a plugin?

A plu%in is a type of package—the full designation 1s plugin package, which is
generally shortened to plugin.

- Existing packages enable many use cases—for example, making network
aequestiA]Elll_ttp)’ custom navigation/route handling (fluro), integration with
evice S

like Firebase

url_launcher and battery), and using third-party platform SDKs
HlutterFire).

- Searching for packages: Packages are published to pub.dev.
When to use packages VS plugins?

Pa C ka g es - Use packages when you need to include Dart code, libraries, or assets that
do not require native platform interaction.

- Examples include implementing algorithms, working with data structures,
or utilizing third-party services with pure Dart code, like HTTP requests
(http package) or date formatting (intl package).

* Use plugins when you need to interact with native platform functionalities
that Dart alone cannot handle, requiring code that uses the native SDKSs of
iOS, Android, or other platforms.

- Examples include accessing the device's camera (camera plugin), GPS
location services (location plugin), or integrating with hardware features
like Bluetooth (flutter blue plugin) and sensors.

Next Slide shows an example of adding a CSS package to an app.

https://docs.flutter.dev/cookbook/networking/fetch-data
https://pub.dev/packages/fluro
https://pub.dev/packages/url_launcher
https://pub.dev/packages/battery
https://github.com/flutter/plugins/blob/master/FlutterFire.md
https://pub.dev/

Tishk

International University

Adding a

package!

Adding a package dependency to an app

To add the package, css_colors, to an app:

1. Depend on it
o Openthe pubspec.yaml file located inside the app folder, and add css_colors: under dependencies.
2. Install it
o From the terminal: Run flutter pub get.
OR
o From Android Studio/IntelliJ: Click Packages get in the action ribbon at the top of pubspec . yaml.
o From VS Code: Click Get Packages located in right side of the action ribbon at the top of pubspec . yaml.
3. Import it
o Add a corresponding import statement in the Dart code.
4. Stop and restart the app, if necessary
o If the package brings platform-specific code (Kotlin/Java for Android, Swift/Objective-C for i0S), that code must be
built into your app. Hot reload and hot restart only update the Dart code, so a full restart of the app might be required
to avoid errors like MissingPluginException when using the package.

The Installing tab, available on any package page on pub.dev, is a handy reference for these steps.

For a complete example, see the css_colors example below.

10

Integrating "http Package in Flutter

Step 1: Understanding Flutter Packages

Flutter packages enhance app functionality with pre-written code. “http" is a popular

package for performing network requests.

Step 2: Adding "http’ Package

Find the Package: Search for the “http " package on pub.dev to get the latest version.

Update "pubspec.yaml :
Open "“pubspec.yaml' and add the “http" package under dependencies:

() Copy code

Use the latest version

Install the Package:

Run “flutter pub get inyourterminal to install the package.

Step 3: Using the "http " Package in Your App

Import the package in your Dart file:

dart () Copy code

import 'package:http/http.dart' as http;

Step 4: Fetching Data

Create a function to fetch data from the internet:

dart () Copy code

Future<void> fetchData() async {
var url = Uri.parse('https://example.com/api/data');
var response = await http.get(url);

if (response.statusCode == 200) {

print('Data: ${response.bodyl}');
} else {

print('Request failed with status: ${response.statusCode}.');

Step 5: Handling Exceptions

Ensure to handle exceptions for reliable app performance.

International University

audioplayers

Platforms RESULTS 180 packages SORT BY SEARCH RELEVANCE

(] Android
. %
[ios audioplayers 2635 140 100
LIKES PUBPOINTS =~ POPULARITY
[J Linux A Flutter plugin to play multiple audio files simultaneously
D macOS v 5.2.1 (2 months ago) (% blue-fire.xyz & MIT
(] web SDK | FLUTTER ~ PLATFORM | ANDROID [0S LINUX MACOS WEB WINDOWS

I OW to I Iay D Wind APl result: audioplayers/audioplayers-library.html
Inaows
SDKs ~ . . %
Sound Across o @
License ~ LIKES PUBPOINTS ~ POPULARITY

Windows implementation of audioplayers, a Flutter plugin to play multiple audio files simultaneously

v 3.1.0 (4 months ago) & blue-fire.xyz &8 MIT (Dart 3 compatible

SDK ‘ FLUTTER PLATFORM | WINDOWS

Advanced ~

Platforms?

8 130 92%

LIKES PUB POINTS = POPULARITY

audioplayers_web

Web implementation of audioplayers, a Flutter plugin to play multiple audio files simultaneously

v 4.1.0 (4 months ago) & blue-fire.xyz & MIT (Dart 3 compatible
SDK | FLUTTER PLATFORM | WEB

APl results: » audioplayers_web/audioplayers_web-library.html

1071 110 98*

LIKES PUB POINTS =~ POPULARITY

assets_audio_player
Dlav miiein/andia etarad in aceate filae Airanths fram Cliittar £ Natuwiarl Dadia | ivaQtraam | Anal filae Namnatihla with

12

Tishk

International University

AudioPlayers

A Flutter plugin to play multiple simultaneously audio files, works for Android, iOS, macOS and web.

How to Play
Sound Across

Platforms?

AudioPlayer

An AudioPlayer instance can play a single audio at a time (think of it as a single boombox). To create it, simply call the constructor:
final player = AudioPlayer(); @
You can create as many instances as you wish to play multiple audios simultaneously, or just to more easily control separate sources.

Sources

Each AudioPlayer is created empty and has to be configured with an audio source (and it can only have one; changing it will replace the
previous source).

The source (cf. packages/audioplayers/lib/src/source.dart) is basically what audio you are playing (a song, sound effect, radio stream, etc),
and it can have one of 4 types:

1. UrlSource: get the audio from a remote URL from the Internet. This can be a direct link to a supported file to be downloaded, or a radio
stream.

2. DeviceFileSource: access a file in the user's device, probably selected by a file picker.
3. AssetSource: play an asset bundled with your app, by default within the assets directory. To customize the prefix, see AudioCache.
4. BytesSource (only some platforms): pass in the bytes of your audio directly (read it from anywhere).

13

Tishk

International University

AudioPlayers
chat 332 online

A Flutter plugin to play multiple simultaneously audio files, works for Android, iOS, macOS and web.

How to Play
Sound Across

Platforms?

Advanced Concepts

AudioCache

Flutter does not provide an easy way to play audio on your local assets, but that's where the AudioCache class comes into play. It actually
copies the asset to a temporary folder in the device, where it is then played as a Local File. It works as a cache because it keeps track of the
copied files so that you can replay them without delay.

If desired, you can change the AudioCache per player via the AudioPlayer().audioCache property or for all players via
AudioCache.instance .

Local Assets

When playing local assets, by default every instance of AudioPlayers uses a shared global instance of AudioCache, that will have a default
prefix "/assets" configured, as per Flutter conventions. However, you can easily change that by specifying your own instance of AudioCache
with any other (or no) prefix.

Default behavior, presuming that your audio is stored in /assets/audio/my-audio.wav :

final player = AudioPlayer(); &
await player.play(AssetSource('audio/my-audio.wav'));

Remove the asset prefix for all players:

AudioCache.instance = AudioCache(prefix: '') &
final player = AudioPlayer();
await player.play(AssetSource('assets/audio/my-audio.wav'));

14

Tishk

International University

@ Simulator File Edit Hardware Debug Window Help
B

4 xylophone-flutter B lib § main.dart [iPhone XR ¥ 4, maindart v

‘g (& Project ~ Q= & - ﬂ"tm' jart fiall.dan ﬂadjectives.dart ﬁnoun&dan pubspec.yam|
T

2 v 4 xylophone-flutter i import

“ b g .idea import
» I android
v Im assets
R notel.wav
B note2.wav
B note3.wav class XylophoneApp extends StatelessWidget {
B noted.wav @override
R noteS.wav ; Widget build(BuildContext context) {
B note6.wav return MaterialApp(
X *3”"";‘8”“ home: Scaffold(
> Relos body: SafeArea(
Cr=i2 : child: Center(
g .flutter-plugins child: FlatButton(
@ .gitignore onPressed: () {
g .metadata final player =

& .packages
& pubspec.lock player.play(

void main() => runApp(XylophoneApp());

pubspec.yaml|

’

& README.md child: Text(

v [l External Libraries Are
v [Dart Packages

Run: main.dart

|G Console 4 C; @ More Actions v

volume: 1.000000 1

position: 0.000000 (null)

setUrl /Users/angelayu/Library/Developer/CoreSimulator/Devices/B898B9DB-29D4-440C-ABC6-EL
/Data/Application/66B3D4A2-7DAE-4D7F-8661-3EE6FL42562B/Library/Caches/notel.wav

player status: 1

ios -> updateDuration...3.750000

ios -> invokechannel

»

2= Z: Structure

m W &Y e >

¥ 2: Favorites

I final player = AudioPlayer();
player.play(AssetSource(fileName));

GN M 2 100%B) & Fri16:25

4:25

Click '\49

Q Q=

Tishk

International University

How to Play
Multiple
Sounds?

€ Simulator File Edit Hardware Debug Window Help 04 = 100%@ | Fri1630 Q @ =

O audioplayers/audio_cachemd X @ DartPad X |

& = (C @ GitHub, Inc. [US] | https://github.com/luanpotter/audioplayers, ‘ hal | e n g e

To plav an audio. iust run:

import 'package:audioplayers/audioplayers.dart’;

final player = AudioPlayer();
player.play(AssetSource(fileName));

This will play the explosion.mp3 file in your projects asset folder.

The file structure would be something like this:

L assets
L— explosion.mp3

Don't forget to add these files to your pubspec.yaml file:

flutter:
assets:
- assets/explosion.mp3

You can optionally pass a prefix to the constructor if all your musics are in a specific folder inside the assets fq
for instance, uses the 'audio/' prefix:

AudioCache player = new AudioCache(prefix: 'audio/');
player.play('explosion.mp3');
// now this file will be loaded from assets/audio/explosion.mp3

I miiiimmd b e ladafiaibal Liadb iiaa 1220 fiimadiaa,

16

Tishk

./- ‘\.
‘_\/_, International University m
s)

void playSound(String name) {

final AudioCache player = AudioCache();
player.play('$name)3
}

Used in the function

DART

void main() {

greet(personToGreet: 'Jackie', greeting: 'How do you do');

void greet({String personToGreet, String greeting}) {
print('$greeting $personToGreet');

}

Dart Functions

In the Xylophone app, functions are utilized to modularize and simplify
code, making it more readable and easier to maintain.

Dart's first-class function support allows functions to be passed as
arguments, enhancing code flexibility and reusability.

By This feature is particularly useful in the app for creating reusable
components, such as buttons that play different sounds.

Abstracting functionality into functions, developers can easily adjust and
expand their apps without repetitive code, demonstrating the power of
Dart's function capabilities in practical applications.

18

iversity

Challenge

==
0
A
2

N
5
-
2
3

.

-

"."\/"’“;, International Un

Tishk

International University

Try using Expaneded Widget to
improve the design.

The Expanded widget in Flutter is
crucial for creating responsive Uls
that adapt to various screen sizes.

It works by letting child widgets
flexibly occupy the available
space, adjusting their.size
according to the surrounding
layout.

You should cleanup the codeby
creating a function to call
everytime you want to build a key
instead of writing the key code 7
times!

Ixylophone-flutter [~/Desktop/Flutter Dev/xylophone-flutter] - .../lib/main.dart [xylophone-flutter]

[J iPhone XR ¥ 4, maindart v P,

pubspec.yaml|
J

void buildKey() {
Expanded (
child: FlatButton(
color: Colors.red,
onPressed: () {
playSound(1);

@override
Widget build(BuildContext context) {
return MaterialApp(
home: Scaffold(
backgroundColor: Colors.black,
body: SafeArea(
child: Column(

crossAxisAlignment: CrossAxisAlignment.stretch,

children: <Widget>[
buildKey(),
| PP DY | 7 N L)

The expression here has a.Wpe of 4'void', and therefore cannot be used.
PARRANTNTRI T Y
buildKey(),
buildKey(),|
buildKey (Y,
buildKey (L,
// <Widget

1, 2t>[]

1wy: Tishk

‘_\/_, International University

This widget is particularly
useful in applications like the
Xylophone app, where you
want the Ul elements to be
evenly spaced and visvally e
consistent across devices. | i R

. void buildKey() {
E ded (
. -By utilizing Expanded, [EEEESS——
EJ color: Colors.red,

developers can ensure their onPressed: () {

app's interface remains [EEATTEE
intuitive and accessible, [
regardless of the device's | E——

home: Scaffold(
. . backgroundColor: Colors.black,
screen dimensions. bOdyHnate e
crossAxisAlignment: CrossAxisAlignment.stretch,
children: <Widget>[
buildKey(),
sl Ao)\

The expression here has a type of -'void', and therefore cannot be used.
oA LS L VT
buildKey(),
buildKey(),|
buildKey (Y,
buildKey (L,
] ’ w1ldg |

Tishk

International University

-

® A Dartrad X <+

C @ https://dartpad.dartlang.org/4bf7549¢820d1adb4be8673e92820e4: Cha| | enge

DartPad NewPad. Reset. Format Share.. Samples

DART » Run CONSOLE

//Challenge: Without changing the main() function, can you make this code work 23.333333333333382

and get the result printed in the console?
void main() {

int stepiResult = add(n1: 5, n2: 9);

int step2Result = multiply(step1Result, 5);
double finalResult = step2Result / 3;

print(finalResult);

&
@ add({int n1, int n2}) » int

\ .

Tishk

International University

Expanded buildKey({Color color, int soundNumber}) {

return Expanded (
child: FlatButton(

color: color,
onPressed: () {

playSound(soundNumber) ;

i
), // FlatButton
); // Expanded
}

@override

Widget build(BuildContext context) {

return MaterialApp(
home: Scaffold(

backgroundColor: Colors.black,

body: SafeArea(
child: Column(

crossAxisAlignment: CrossAxisAlignment.stretch,
children: <Widget>[

buildKey(color:
buildKey(color:
buildKey(color:
buildKey(color:
buildKey(color:
buildKey(color:
buildKey(color:

1. // <Widaet>[]

Colors.
Colors.
Colors.
Colors.
Colors.
Colors.
Colors.

red, soundNumber: 1),|
orange, soundNumber: 2),
yellow, soundNumber: 3),
green, soundNumber: 4),
teal, soundNumber: 5),
blue, soundNumber: 6),
purple, soundNumber: 7),

International University

Refactor and
Clean Up Our

When refactoring and cleaning up your code, prioritize readability and
maintainability.

This involves organizing code logically, such as grouping related functions
together, and choosing descriptive, meaningful names for variables and
functions.

These practices not only make your code more understandable to others
(and your future self) but also facilitate easier updates and debugging.

This approach ensures that your code remains scalable, efficient, and less
prone to errors, contributing to the overall quality and longevity of your
application.

In refactoring the Xylophone app, it's advisable to use widgets instead of
functions for creating xylophone keys.

Because using widgets leverages Flutter's reactive style, improving the app's
performance and compatibility with the framework's architecture.

Widgets provide a more structured way to manage the Ul and state,
enhancing code readability and maintainability.

They also facilitate the reuse of Ul components and make it easier to apply
themes and styles consistently across the app.

This practice aligns with Flutter's design principles, leading to a more
efficient and scalable application.

24

iy Tishk

International University

|

- Now that you've built the app, it's time to customize it to make it your own.

° Explore your creativity in app development by making the Xylophone app

uniquely yours.

- Consider adding unique sound sets, vibrant color schemes, and interactive

elements to enhance your app.

* This approach not only sets your project apart but also deepens your

understanding of Flutter's capabilities, encouraging innovative thinking in
design.

* There's a large collection of free sounds at https://freesound.org/

* You can download collections of various sounds, e.g. birds/ cats

sounds/atmospheric sounds.

- We emphasize the significance of user experience and interface design in

customization.

- Maybe you'll want to build a personal sound track to turn your life into a

movie.

- Want to investigate a strange movement in your backyard? Click on the tense

string ensemble. Hit with a flash of inspiration? Click on the corresponding
sound effect.

* Perhaps a bit too much of a narcissistic app idea, I'll leave you to come up with

the ideas to customise the app.

25

https://freesound.org/

Tishk

International University

- Today, we dove into Flutter, learning more about its packages and
plugins.

* We saw how to pick and use an Audio Player package to add cool
features to our apps.

- We also got a closer look at Dart Functions, discovering how they make
our code cleaner and easier to read, especially when we use functions
and parameters smartly.

* You got to apply what we learned by starting a Xylophone app.

* This project isn't just about practicing coding; it's about seeing how all
these pieces come together in a real app you're building.

- Remember, this is just the start. Keep playing around with new
packages, tweaking your app's look, and cleaning up your code. And
don't forget to join in on the fun with the Flutter community.

* Share what you make, pick up tips from others, and maybe help out

someone else. Keep being curious and creative — it's the best way to
learn and make awesome stuff.

26

