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3.1  A) Linear Transformation Relationship 

 

 

 

 

VB = D VE  

 

         Matrix D transforms from VE to VB ( from Earth to Body system 

By inverting the direction cosine matrix D the transformation from (VB ) to (VE) is obtained as 

given by: 

                                 VE =  = D−1 VB = DTVB
 = 𝑹𝟑

−𝟏(𝝍 )  𝑹𝟐
−𝟏( 𝜽)   𝑹𝟏

−𝟏( 𝝓)   VB  

  

 



      B) Rotational Transformation Matrix 

The relationship between the angular velocities in the body frame (p, q, and r) and the Euler rates 

( ψ’ , θ’, and ϕ’) also can be determined from   

 

Above  Equation can be solved for the Euler rates in terms of the body angular velocities: 

 

By integrating these equations, one can determine the Euler angles (ψ’ , θ’, and ϕ’) 

     3.1.1 Wing area: The reference area is usually the gross plan area of the wing, including that 

part within the fuselage, and is denoted S:  

 

 

 

3.1.2 Standard mean chord (smc) 



       

 3.1.3 Aspect ratio: The aspect ratio of the aircraft wing is a measure of its spanwise slenderness 

and is denoted A and is defined as follows: 

 

   3.1.4 Centre of gravity location: The centre of gravity, cg, of an aircraft is usually located on 

the reference chord as indicated in Fig. above. Its position is quoted as a fraction of  ( c), denoted 

h, and is measured from the leading edge of the reference chord as shown. The cg position varies 

as a function of aircraft loading, the typical variation being in the range 10–40% of c. Or, 

equivalently, 0.1 ≤ h ≤ 0.4. 

EXAMPLE 1: Useful application of the direction cosine matrix is to calculate height 

perturbations in terms of aircraft motion. Above Equation (D-1 ) may be used to relate the 

velocity components in aircraft axes to the corresponding components in earth axes as follows: 

 

 

               Problems 

1.  With the aid of a diagram showing a generalized set of aircraft body axes, define the 

parameter notation used in the mathematical modeling of aircraft motion1. 

2.  In the context of aircraft motion, what are the Euler angles? If the standard right handed 

aircraft axis set is rotated through pitch θ and yaw ψ angles only, show that the initial 

vector quantity (x0, y0, z0) is related to the transformed vector quantity (x, y, z) as 

follows: 

 
3. Define the span, gross area, aspect ratio and mean aerodynamic chord of an aircraft wing. 



4. Distinguish between the center of pressure and the aerodynamic centre of an aerofoil. 

Explain why the pitching moment about the quarter chord point of an aerofoil is 

nominally constant in subsonic flight. 

3.2 Degree of stability 

The condition for stable trim at incidence αe may be expressed:  

                                            Cm = 0  

      and                       dCm/ dα  <  0 

This is usually an acceptable approximation for subsonic aircraft.                                                                                                                                                 

However, this argument becomes increasingly inappropriate with increasing Mach number.        

The rather more complex analysis by Gates and Lyon (1944) takes speed effects into account and 

defines a general requirement for longitudinal static stability as: 

                dCm/ dCL < 0     this because α and CL are linearly related by the lift curve slope  

                                                               a = dCL/dα. 

In a similar way the conditions for lateral–directional static stability may be deduced as                                        

                dCl/ dφ  < 0                 and              dCn /dβ > 0 

where Cl and Cn are rolling moment and yawing moment coefficients respectively and φ and β 

are roll angle and sideslip angle respectively 

3.3 Equations of Motions 

An aircraft has six degrees of freedom (if it is assumed to be rigid), which means is has six paths 

it is free to follow: it can move forward, sideways, and down; and it can rotate about its axes 

with yaw, pitch, and roll. In order to describe the state of a system that has six degrees of 

freedom, values for six variables (unknowns) are necessary. To solve for these six unknowns, six 

simultaneous equations are necessary. For an aircraft, these are known as the aircraft equations 

of motion. 

The derivation of the equations, however, follows a very simple pattern starting from Newton's 

second law for translational and rotational motions. Newton's second law for translational 

motions is 

 

where F is the sum of the externally applied forces and mV is linear momentum. Newton's 

second law for rotational motions is 



 

where G is the sum of the externally applied moments and H is angular momentum. 

In order to derive the equations of motion, each side of Newton's equations are expanded to yield 

the following six nonlinear differential equations: 

 

 

The Left-Hand Side (LHS) of these equations represent the applied forces and moments on the 

aircraft while the Right-Hand Side (RHS) stands for the aircraft's response to these forces and 

moments. 

Small perturbation theory will be used to linearize these equations so they can be solved. 

The equations will also be used to derive aircraft transfer functions which will be a fundamental 

part of the mathematical modeling of the aircraft and its control system in later Lectures. 

3.3.1 Derivation of the right hand side (rhs) of the equations of motion 

    ASSUMPTION;  

1. The aircraft is a rigid body. 

2. The earth and atmosphere are fixed in inertial space. 

3. ASSUMPTION; Mass (m) is constant (dm/dt =0). 

4. In addition, most motion of interest in stability and control takes place in a relatively 

short time. 

3.3.2 Translational Force Relations: The vector equation for the aircraft translation from 

Newton's second law 



       (1)                                                                                                         

where VT is the true velocity of the aircraft. Figure below shows how this vector changes in 

both magnitude and direction with respect to the xyz (body) and XYZ (fixed earth) axes. 

From vector analysis, the derivative of the velocity VT in the inertial (fixed earth) coordinate 

system is related to the derivative of V in the body axis system through the relationship 

                 (2) 

               (3) 

VT and ω are two of the four vectors used in the equations of motion to describe the vehicle 

motion (F and G are the other two). 

 They are defined as follows:        VT = Ui + Vj + Wk                (4) 

 where       U = forward velocity, V = side velocity, W = vertical velocity  

and                                                 ω = Pi + Qj + Rk           (5) 

where       P - roll rate , Q pitch rate,  R - yaw rate 

     

The relationship of the true velocity and its components to α and ß and the body axis coordinate 

system is shown in Figure below:          



 

 

If ß is small (assumption), then       cos ß = 1, 

 
 If α is also small (assumption), then   

 

For angle of sideslip       sin β = 
𝑽

𝑽𝑻
            β = 

𝑽

𝑽𝑻
   , for β  is small. 

Using equations (3) and (4) the translational equation (3) can now be written in 

component form as 

                 (6) 

 

 

(7)  



 

    (8) 

3.3.3 Rotational Equations 

Once again from Newton's second law 

         (9) 

This equation states the change in angular momentum, H, is equal to the applied 

moments, G. 

Angular moment; can be thought of as linear momentum with a moment arm included. 

Consider a ball swinging on the end of a string, at any instant of time, as shown in Figure. 

 

The linear momentum of this system would be: 

Linear Momentum = mV 

Angular momentum is defined as H, where H = r X Linear Momentum and, 

since in the example of Figure above, the angle between r and V is 90 degrees, the magnitude of 

the angular momentum is mrV. 

Just as a force F changes linear momentum, (F = d( mV)/dt), a moment G will change angular 

momentum (G = dH/dt). A moment is related to a force in the same manner that angular 

momentum is related to linear momentum: 

              (10) 



In order for us to determine the angular momentum of the aircraft, consider a small element of 

mass m1, somewhere in the aircraft, a distance r1 from the cg. 

 

The angular momentum of m1 is 

                           Hm1  =  r1 X mV1 =   m1 (r1 XV1)     

 

Again from vector analysis, the rate of change of the radius vector r can be related to the body 

axis system (xyz) by    

                                      

since the aircraft is a rigid body r does not change with time (assuming no aeroelastic effects). 

Therefore, the first term can be excluded, and the inertial velocity of the element m, is 

                                        V1 = ω x r1 

    Hence                           Hm1 = = m1 [r1 X (ω X r1)]                (11) 

This is the angular momentum of the elemental mass m1 . In order to find the angular 

momentum of the whole aircraft, we integrate over the aircraft volume (V). ρA is the mass 

density of the aircraft. 



                          

 

        So the components of H are 

                                     

Rearranging the equations 

                                 

                                 

                                        (12) 

The integrals are now recognizable as moments and products of inertia. The moments of inertia 

are defined as 

                                                (13) 

The products of inertia are defined as 

                                                           (14) 



Products of inertia are measures of symmetry. They are zero for views having a plane of 

symmetry. Substituting into equations (12), we find the angular momentum of a rigid body is 

                         (15) 

ASSUMPTION; The xz-plane is a plane of symmetry. This causes two products of inertia, Ixy 

and Iyz to be zero. 

                                H = (PIx – RIxz ) i + QIy j + (RIz – PIxz ) k              (16) 

 

The equation for angular momentum can now be substituted into the moment equation. 

Remember 

                                                   

applies only with respect to inertial space. Expressed in the fixed body axis system, the equation 

becomes: 

                                      



                   

Remember, for a symmetric aircraft, 

                    H =  (PIxx - RIxz ) i + QIy  j + (RIz – PIxz ) k 

Since the body axis system is used, the moments of inertia and the products of inertia are 

constant. Therefore, by differentiating and substituting, the moment equation becomes 

(17) 

Therefore, the rotational component equations are 

     (18) 

This completes the development of the RHS of the six equations (equations 8, and 18) 

    3.3.4 Derivation of the LHS of the equations of motion 

The equations of motion relate the vehicle motion to the applied forces and 

moments: 

 



The RHS of each of these six equations has been completely expanded in terms of 

easily measured quantities. The LHS must also be expanded in terms of convenient 

variables. In order to do this, we must be able to relate the orientation of the body 

axes (xyz) to the moving earth axes (XYZ). This is done through the use of Euler 

angles. The moving earth axis system is used because we will be concerned with 

the orientation of the aircraft with respect to the earth and not its position (location 

of the cg) with respect to the earth. 

 

With these equations it is now possible to transform the equations of motion 

written in body axis terms (U, V, W, P, Q, and R) in terms of the motion seen in 

the inertial (earth axis) system (u, V, W, ψ, θ, and ϕ). 

In general, the applied forces and moments on the LHS can be broken up according 

to the sources shown below. 

         3.3.5 Aerodynamic Forces And Moments: They are most important forces 

and moments on the LHS of the equation are the aerodynamic terms. 

Unfortunately, they are also the most complex. As a result, certain simplifying 

assumptions are made, and several of the smaller terms are arbitrarily excluded to 

simplify the analysis. 

Fx = L sin α - D cos α           (22) 

 



 

 

 

Notice that if the forces were summed along the x stability axis (Figure), it would 

be                    Fx = - D             (23) 

A small angle assumption enables us to do this: cos a = 1 sin a = 0 

Using this assumption, equation 22 reduces to equation 23 

It should be noted that lift and drag are defined to be positive as illustrated. Thus 

these quantities have a negative sense with respect to the stability axis system. The 

aerodynamic terms will be developed using the stability axis system so that the 

equations assume the form, 



 

Expansion of Aerodynamic Terms. 

A stability and control analysis is concerned with how a vehicle responds to perturbation inputs. 

For instance, up elevator should cause the nose to come up; or for turbulence caused sideslip, the 

aircraft should realign itself with the relative wind. Intuitively, the aerodynamic terms have the 

most effect on the resulting motion of the aircraft. 

The small perturbation theory is based on a simple technique used for linearizing a set of 

differential equations. In aircraft flight dynamics, the aerodynamic forces and moments are 

assumed to be functions of the instantaneous values of the perturbation velocities, control 

deflections, and of their derivatives. 

They are obtained in the form of a Taylor series in these variables, and the expressions are 

linearized by excluding all higher-order terms. Analysis of certain unsteady motions may 

therefore require consideration of the time derivatives of the variables listed above. In other 

words: 

 

The variables are considered to consist of some equilibrium value plus an incremental change, 

called the "perturbed value." The notation for these perturbed values is usually lower case. For 

example,         P = P0 + p,      U = U0 + u. 



In summary, the small disturbance assumption is applied in three steps:  

1. Assuming an initial (equilibrium) condition. 

2. Assuming vehicle motion consists of small perturbations about this condition . 

3. Using a first order Taylor series expansion 

The vehicle motion can be thought of as two independent (decoupled) motions, each of 

which is a function only of the variables shown below. 

       

 

Initial Conditions:  

            Steady Flight. Motion with zero rates of change of the linear and angular velocity 

components, i.e., 

 

           Straight Flight. Motion with zero angular velocity components, P, Q, and R = 0. 

          Symmetric Flight.   Motion in which the vehicle plane of symmetry remains fixed in 

space throughout the maneuver. The unsymmetric variables P, R, V, , and ß are all zero in 

symmetric flight.     

    Some symmetric flight conditions are wings-level dives, climbs, and pull-ups with no 

sideslip.       

             Steady straight symmetric flight, the aircraft is assumed to be flying wings level with 

all components of velocity zero except Uo and Wo. Therefore, with reference to the body axis  

 

We have already found that the equations of motion simplify considerably when the stability axis 

is used as the reference axis. This idea will again be employed and the final set of boundary 

conditions will result. This, therefore, is another 



 

            Expansion By Taylor Series. An approximate solution is found by linearizing 

these equations using a Taylor Series expansion and neglecting higher ordered 

terms. The resulting Taylor Series expansion has the form 

            

(31) 

for small perturbed values of U, the function can be accurately approximated by 

                     

In small perturbation theory, each of the variables is expressed as the sum of an initial value plus 

a small perturbed value. For example 

 

       



And all other terms follow. We also elect to let α = Δα, α’’ = Δα’’ and δe= Δδe . Dropping higher 

order terms involving u2, q2, etc., 

Lateral-directional motion:  is a function of ß, ß, P, R, δa , δr and can be handled in a similar 

manner. For example, the aerodynamic terms for rolling moment become 

(32) 

This development can be applied to all of the aerodynamic forces and moments. The equations 

resulting from this development can now be substituted into the LHS of the equations of motion. 

3.3.6 Direct Thrust Forces and Moments:       

Since thrust does not always pass through the cg, its effects on both the force and moment 

equations must be considered (Figure). The component of the thrust vector along the x-axis is 

 

The component of the thrust vector along the z-axis is      ZT = -T sin Ɛ 

 

The pitching moment component is,      MT =  T(Zk) = T Zk,  

where Zk is the perpendicular distance from the thrust line to the cg and Ɛ is the thrust angle. 

For small disturbances,    T = T (U, δRPM )      

                                        

Thrust effects will be considered in the longitudinal equations only since the thrust vector is 

normally in the vertical plane of symmetry and does not affect the lateral-directional motion. 



XT and ZT will be referred to as "drag due to thrust" and "lift due to thrust. (α = 0 assumption in 

order to use the stability axes). They are components of thrust in the drag (x) and lift (z) 

directions. Thus: 

 

3.3.7 Gravity Forces: Gravity acts through the eg of an aircraft and, as a result, has 

no effect on the aircraft moments. 

Effect of weight on the x-axis.      Xg =   -mg sin θ 

        Since m and g are considered constant, θ is the only pertinent variable. using the small 

perturbation assumption as: 

 

Xg will be referred to as drag due to weight, (Dwt). 

 

Likewise the z-force can be expressed as negative lift due to weight (L ), and the expanded term 

becomes 

 

The effect of gravity on side force depends solely on bank angle (ϕ),assuming small θ. 

Therefore, 

 

 


