
3.3.4 Derivation of the LHS of the equations of motion 

The equations of motion relate the vehicle motion to the applied forces and 

moments: 

 

The RHS of each of these six equations has been completely expanded in terms of 

easily measured quantities. The LHS must also be expanded in terms of convenient 

variables. In order to do this, we must be able to relate the orientation of the body 

axes (xyz) to the moving earth axes (XYZ). This is done through the use of Euler 

angles. The moving earth axis system is used because we will be concerned with 

the orientation of the aircraft with respect to the earth and not its position (location 

of the cg) with respect to the earth. 

 

With these equations it is now possible to transform the equations of motion 

written in body axis terms (U, V, W, P, Q, and R) in terms of the motion seen in 

the inertial (earth axis) system (u, V, W, ψ, θ, and ϕ). 

In general, the applied forces and moments on the LHS can be broken up according 

to the sources shown below. 

         3.3.5 Aerodynamic Forces And Moments: They are most important forces 

and moments on the LHS of the equation are the aerodynamic terms. 

Unfortunately, they are also the most complex. As a result, certain simplifying 



assumptions are made, and several of the smaller terms are arbitrarily excluded to 

simplify the analysis. 

Fx = L sin α - D cos α           (22) 

 

 

Notice that if the forces were summed along the x stability axis (Figure), it would 

be                    Fx = - D             (23) 

A small angle assumption enables us to do this: cos α = 1 sin α = 0 

Using this assumption, equation 22 reduces to equation 23 

It should be noted that lift and drag are defined to be positive as illustrated. Thus 

these quantities have a negative sense with respect to the stability axis system. The 

aerodynamic terms will be developed using the stability axis system so that the 

equations assume the form, 



 

Expansion of Aerodynamic Terms. A stability and control analysis is concerned with how a 

vehicle responds to perturbation inputs. For instance, up elevator should cause the nose to come 

up; or for turbulence caused sideslip, the aircraft should realign itself with the relative wind. 

Intuitively, the aerodynamic terms have the most effect on the resulting motion of the aircraft. 

The small perturbation theory is based on a simple technique used for linearizing a set of 

differential equations. In aircraft flight dynamics, the aerodynamic forces and moments are 

assumed to be functions of the instantaneous values of the perturbation velocities, control 

deflections, and of their derivatives. 

They are obtained in the form of a Taylor series in these variables, and the expressions are 

linearized by excluding all higher-order terms. Analysis of certain unsteady motions may 

therefore require consideration of the time derivatives of the variables listed above. In other 

words: 

 

The variables are considered to consist of some equilibrium value plus an incremental change, 

called the "perturbed value." The notation for these perturbed values is usually lower case. For 

example,         P = P0 + p,      U = U0 + u. 

In summary, the small disturbance assumption is applied in three steps:  



1. Assuming an initial (equilibrium) condition. 

2. Assuming vehicle motion consists of small perturbations about this condition . 

3. Using a first order Taylor series expansion 

The vehicle motion can be thought of as two independent (decoupled) motions, each of 

which is a function only of the variables shown below. 

      (30B) 

(30C) 

 

 

Initial Conditions:  

            Steady Flight. Motion with zero rates of change of the linear and angular velocity 

components, i.e., 

 

           Straight Flight. Motion with zero angular velocity components, P, Q, and R = 0. 

          Symmetric Flight.   Motion in which the vehicle plane of symmetry remains fixed in 

space throughout the maneuver. The unsymmetric variables P, R, V, , and ß are all zero in 

symmetric flight.     

    Some symmetric flight conditions are wings-level dives, climbs, and pull-ups with no 

sideslip.       

             Steady straight symmetric flight, the aircraft is assumed to be flying wings level with 

all components of velocity zero except Uo and Wo. Therefore, with reference to the body axis  

 



We have already found that the equations of motion simplify considerably when the stability axis 

is used as the reference axis. This idea will again be employed and the final set of boundary 

conditions will result. This, therefore, is another 

 

            Expansion By Taylor Series. An approximate solution is found by linearizing 

these equations using a Taylor Series expansion and neglecting higher ordered 

terms. The resulting Taylor Series expansion has the form 

            

(31) 

for small perturbed values of U, the function can be accurately approximated by 

                     

In small perturbation theory, each of the variables is expressed as the sum of an initial value plus 

a small perturbed value. For example 

 



       

And all other terms follow. We also elect to let α = Δα, α’’ = Δα’’ and δe= Δδe . Dropping higher 

order terms involving u2, q2, etc., 

Lateral-directional motion:  is a function of ß, ß, P, R, δa , δr and can be handled in a similar 

manner. For example, the aerodynamic terms for rolling moment become 

(32) 

This development can be applied to all of the aerodynamic forces and moments. The equations 

resulting from this development can now be substituted into the LHS of the equations of motion. 

 

3.3.6 Direct Thrust Forces and Moments:       

Since thrust does not always pass through the cg, its effects on both the force and moment 

equations must be considered (Figure). The component of the thrust vector along the x-axis is 

 

The component of the thrust vector along the z-axis is      ZT = -T sin Ɛ 

 

The pitching moment component is,      MT =  T(Zk) = T Zk,  

where Zk is the perpendicular distance from the thrust line to the cg and Ɛ is the thrust angle. 

For small disturbances,    T = T (U, δRPM )      

                                        



Thrust effects will be considered in the longitudinal equations only since the thrust vector is 

normally in the vertical plane of symmetry and does not affect the lateral-directional motion. 

XT and ZT will be referred to as "drag due to thrust" and "lift due to thrust. (α = 0 assumption in 

order to use the stability axes). They are components of thrust in the drag (x) and lift (z) 

directions. Thus: 

         (33) 

3.3.7 Gravity Forces: Gravity acts through the cg of an aircraft and, as a result, has 

no effect on the aircraft moments. 

Effect of weight on the x-axis.      Xg =   -mg sin θ 

Effect of weight on they-axis        Xy  =  mg cosθ sinϕ 

Effect of weight on the z-axis       Xz  =  mg cosθ cosϕ 

        Since m and g are considered constant, θ is the only pertinent variable. using the small 

perturbation assumption as: 

 

Xg will be referred to as drag due to weight, (Dwt). 

 

Likewise the z-force can be expressed as negative lift due to weight (L ), and the expanded term 

becomes 

 

The effect of gravity on side force depends solely on bank angle (ϕ),assuming small ϕ. 

Therefore, 



 

Expanded LHS Equations: 

 

 

 

 

 

 

RHS in terms of small perturbations: 

Start with the RHS of Equation.  

 

 

Applying the boundary conditions, (assumptions from subsection 4.6.4.3.3), simplifies the 

equation to 



 

Using this same technique, the set of RHS equations become: 

 

 

 

 

REDUCTION OF EQUATIONS TO A USABLE FORM 

       Normalization Of Equations  

To put the linearized expressions into a more usable form, each equation is multiplied by a 

"normalization factor." This factor is different for each equation and is picked to simplify the 

first term on the RHS of the equation. It is desirable to have the first term of the RHS be either a 

pure acceleration (u, p, q, or r), or angular rate (a, or ß) and these terms were previously 

identified in equations (30A) and (30B) as the longitudinal or lateral-directional variables.  

 

 



 

Now, if we introduce the small-disturbance notation into the equations of motion, we can 

simplify these equations. As an example, consider the X force equation: 

                              

Substituting the small-disturbance variables into this equation yields 

 

If we neglect products of the disturbance and assume that  

 

then the X equation becomes 

 

 

If all the disturbance quantities are set equal to 0 in these equation, we have the reference flight 

condition  



 

This reduces the X-force equation to 

 

The force AX is the change in aerodynamic and propulsive force in the x direction and can be 

expressed by means of a Taylor series in terms of the perturbation variables. If we assume that 

ΔX is a function only of u, w, δe, and δT, then ΔX can be expressed as 

 

 

 

The variables δe, and δT, are the change in elevator angle and throttle setting, respectively. 

Substituting the expression for AX into the force equation yields: 

 

 

The equation can be rewritten in a more convenient form by dividing through by the mass m:  

 

where Xu = dX/du/m, X, = dX/dw/m, and so on are aerodynamic derivatives divided by the 

airplane's mass. 

The complete set of linearized equations of motion is presented in Table 3.2. below 



 

 

 

 

Summery 

 

 



 

 

Stability derivatives used in equations of equations 

 

 

 

 



Problems 

1. Given (F = d mVT/dt) , F is a force vector, m is a constant mass, and VT is 

the velocity vector of the mass center. Find Fx , Fy , and Fz (if VT = Ui + Vj 

+ Wk and w = Pi + Qj + Rk) with respect to the fixed earth axis system. 

2. Given H = Jv pA (r X V) dv where pAdV is the mass of a particle, with r as 

its radius vector from the eg, and V as its velocity, with respect to the eg. 

Find Hx with respect to the fixed earth axis system. 

3. Define: L , M , N, P, Q, R 

4. Define ψ, ϕ,θ,What are they used for? in what sequence must they be used? 

Explain the difference between ψ and ß. 

5. What are the expressions for P, Q, R, in terms of Euler angles? 

6.                                     D, L, M =  f( , , , , )  

Y, L, N = f( , , , , , ) 

 


