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1. A feedback control system
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closed-loop transfer function C(s)/R(s):

ROUTH'S CRITERION
The feedback systems described here can be designed to control accurately the 
output to some desired tolerance.

The roots of the characteristic equation tell us whether or not the system is 
dynamically stable. 

If all the roots of the characteristic equation have negative real parts the system will 
be dynamically stable. On the other hand,

If any root of the characteristic equation has a positive real part the system will be 

Unstable. 

Consider the characteristic equation

The necessary but not sufficient conditions are that 

1. All the coefficients of the characteristic equation must have the same sign. 

2. All the coefficients must exist. 



LEC. Six
Automatic Control Theoryt - The Classical Approach

The Routh stability criterion states: 

1. If all the numbers of the first column have the same sign then the roots of the 

characteristic polynorninal have negative real parts. The system therefore is stable. 

2. If the numbers in the first column change sign then the number of sign changes 

indicates the number of roots of the characteristic equation having positive real parts. 

Therefore, if there is a sign change in the first column the system will be unstable. 

Definition of Routh array: Routh table 
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EXAMPLE 7.1. Determine whether the characteristic equations given below have 
stable or unstable roots. 

(a) A' + 6A2 + 12A + 8 = 0            (b) 2~~ + 4A2 + 4A + 12 = 0 

(c) ,4A4 + BA' + CA2 + DA + E = 0

Solution.

(c)  

For the airplane to be stable requires that: 
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If the first number in a row is 0 and the remaining elements of that row are 

nonzero, the Routh method breaks down. To overcome this problem the lead 

element that is 0 is replaced by a small positive number, E. With the substitution 

of E as the first element, the Routh array can be completed. After completing the 

Routh array we can examine the first column to determine whether there are any 

sign changes in the first column as E approaches 0. 

EXAMPLE7.2 

Now as E goes to 0 the sign of the first elements in rows 3 and 4 are positive. However, in 
row 5 the lead element goes to -2 as E goes to 0. We 

note two sign changes in the first column. 

which means it is unstable
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The characteristic equation of the closed loop system is given by the denominator:

where n > m and k is an unknown system parameter

where q = 0, 1,2, . . . ,n-m-1

• It can be shown easily that the root locus contours start at the poles of transfer function, 
G(s)H(s) and end at the zeroes of the transfer function as k is varied from 0 to infinity. For 
example, if we rearrange the magnitude criteria in the following manner, 

• Then as k goes to 0 the function becomes infinite
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Rules for graphical construction of the root locus plot

1. The root locus contours are symmetrical about the real axis.

2. The number of separate branches of the root locus plot is equal to the number of poles of the transfer 

function C(s)H(s). Branches of the root locus originate at the poles of G(s)H(s) for k = 0 and terminate at 

either the open-loop zeroes or at infinity for k = x. The number of branches that terminate at infinity is 

equal to the difference between the number of poles and zeroes of the transfer function G(s)H(s), where n 

= number of poles and m = number of zeros. 

3. Segments of the real axis that are part of the root locus can be found in the following manner: Points on 

the real axis that have an odd number of poles and zeroes to their right are part of the real axis portion of 

the root locus. 

4. The root locus branches that approach the open-loop zeroes at infinity do so along straight-line 

asymptotes that intersect the real axis at the center of gravity of the finite poles and zeroes. 

Mathematically this can be expressed as 

5. The angle that the asymptotes make with the real axis is given by

For q = 0, 1.2,. ..,(n -m - 1)

6. The angle (ϕ) of departure of the root locus from a pole of G(s)H(s) can be found by the following 

expression: 

where (ϕ) is the net angle contribution at the pole of interest due to all other poles and zeroes of G(s)H(s). 

The arrival angle at a zero is given by a similar expression:
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EXAMPLE 7.3. Sketch the root locus plot for the transfer function

(m = 1) and four poles (n = 4):

zero: s = -3 poles: s = 0, s = -10, s = -4 ± 2i

The intersection of the asymptotes with the real axis and the angle of the asymptotes follow

The pole at the origin approaches zero at s = -3, the pole at s = - 10 goes to -ꝏ, on the real 
axis, and the complex poles go to zeroes along asymptotes making an angle of 60" and 300" 
with the real axis as k goes from 0 to ꝏ
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Example
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The transfer function for a closed-loop feedback system can be written as

If we excite the system with a sinusoidal input such as    

the steady-state output of the system will have the form 

• The ratio of output to input for a Sinusoidal steady state can be obtained by replacing the 

Laplace transform variable s with iw: 
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Various graphical ways of presenting frequency response data. 
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The transfer function of a second-order system 

can be expressed as:

The time response of a second-order

system to a step input for an

underdamped system; that is, Ɛ < 1, 

is given by
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. In the frequency domain the design specifications are given in terms 
of the response peak M,, the resonant frequency w,, the system 
bandwidth w,, and the gain and phase margins.
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From the preceding relationships developed for the second-order system the 

following observations can be made: 

1. The maximum overshoot for a unit step in the time domain is a function of only ζ. 

2. The resonance peak of the closed-loop system is a function of only ζ. 

3. The maximum peak overshoot and resonance peak are related through the 

damping ratio. 

4. The rise time increases while the bandwidth decreases for increases in system 

damping for a fixed ωn, The bandwidth and rise time are inversely proportional 

to one another. 

5. The bandwidth is directly proportional to ωn. 

6. The higher the bandwidth, the larger is the resonance peak. 
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The gain margin can be estimated by taking the ratio of the gain when the locus crosses the 

imaginary axis to the gain selected for the system:

• The phase margin can be calculated from the equation

• The phase margin can be determined for the selected gain by estimating the 
frequency on the imaginary axis that satisfies the relationship 
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transfer function is given in Figure :

Determine the following information: 

(a) Select the system gain so

that the dominant roots 

have a damping ratio, ζ = 0.6. 

(b) Estimate the settling time. 

(c) Find the gain and phase 

margin for the gain selected 

in part (a).

Solution: 

The intersection of the line of constant damping ratio (8 = 53" , , ζ = 0.6) with 

the root locus occurs at s = - 1.2 + 1.65. 
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The settling time t, can be estimated from the approximate formula

To determine the gain margin from the root locus plot we can use Equation

We need to determine the gain for the system when the root locus crosses the imaginary 

axis. From the root locus plot we can determine that s = +5.5i at the crossover point. 

The gain is determined from the magnitude criteria

The phase margin can be determined by finding the frequency w,, the gain crossover 
frequency, so that  
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An expression for the error signal can be developed. The error signal E(s) can be 
shown to be 
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EXAMPLE 7.6. Given the following transfer function, determine the steady-state 

error of the system to unit step, ramp, and parabolic inputs: 

Solution. The transfer function G(s)H(s) is in the pole-zero form. Rewriting the 

transfer function in the time constant form yields

From Table ,we see that the steady error is 0 for a step input, 1/Kv for the 

ramp input, and ꝏ for the parabolic input.
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The steady-state error

for the ramp input is

As the system gain is increased, the steady-state error will decrease. However, for this 
particular example, the system gain is limited because too large a gain will cause the 
system to be unstable.
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The compensators can be thought of as an additional transfer function Gc(s) 

that can be added to either the forward or feedback path of the control system. When 

the compensator is added to the forward path it is called a cascade or series 

compensator and when it is placed in the feedback path, it is called feedback or 

parallel compensator. In general, the compensators are electrical circuits or 

mechanical subsystems that provide the designer parameters that can be adjusted to 

improve the overall system performance. 
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Forward-Path Compensation: consider the simple control system shown in Figure 

7.15. Suppose that the performance requirements are given in terms of the damping 

ratio and settling time as follows: 

From the root locus plot shown we can achieve the desired damping ratio by finding 

the gain for the point on the locus that intersects the radial line from the origin that 

makes an angle of 45" with respect to the negative real axis. 

The undamped natural frequency ωn, is the distance along the radial line of constant 

ζ from the origin to the root locus. For this case ωn = 0.5 rad/s. 

The settling time which can be estimated by 

The settling time is not less than 3 s. . If the root locus plot could be made to 
intersect the ζ = 0.707 line at a larger value of wn, the settling time constraint could 
be met.
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If  a simple zero, added to an open-loop transfer function G(s)H(s) causes the locus 

to bend more toward the left in the complex plane 

Figure (b) is a root locus plot with the addition of a zero as s = - 1.1. With the 

addition of the zero, the root locus plot bends toward the left. The value of on for the 

damping ratio of 0.707 is now 1.98 radls, which yields a settling time less than 3 s
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Lead compensator:

Unfortunately a simple zero is not very practical. In practice we add a transfer 

function of the form 

where zc/pc < 1, or the compensator poles is located to the left of the compensator 
zero. Such a compensator is called a lead compensator. 

• The lead compensator can be used to improve the transient response 
characteristics of the control system, by proper adjust the pole and zero location 
of the compensator to shape the root locus so that both the damping ratio and 
settling time specifications can be met  

• It is possible to have a control system design with good transient characteristics 
but a a large steady-state error. When the steady-state error is large a lag 
compensator can be used to improve the steady-state error. 

• where the compensator pole near the origin is located to the

right of the compensator zero (zc/pc > 1 ).

For the case where both the transient and steady response are unsatisfactory a 

combination of a lag and lead compensator can be used. An example of a lag-lead 

compensator follows:
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Electrical circuits used as a compensator. 
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Feedback-Path Compensation 

Feedback compensation can be used to improve the damping of the system by 

incorporating an inner rate feedback loop. The stabilizing effect of the inner loop 

rate feedback can be demonstrated by a simple example

The closed-loop transfer function

for this system is given by 
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Feedback-Path Compensation

The inner loop TF

The closed-loop transfer function can be obtained by letting

If we compare the closed-loop transfer function for the cases with and without rate 

feedback we observe that in the closed-loop characteristic equation the damping term 

has been increased by 𝑘𝝎𝒏
𝟐

. The gain k, can be used to increase the system 

damping. 
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• We have shown examples of various kinds of control concepts. The simplest 

feedback controller is one for which the controller output is proportional to the 

error 

signal. Such a controller is called Proportional controller. Obviously the 

controller's main advantage is its simplicity.  It has the disadvantage that there 

may be a steady-state error. 

• The steady-state error can be eliminated by using an integral controller 

where k, is the integral gain. The advantage of the integral controller is that the 

output is proportional to the accumulated error. The disadvantage of the integral 

controller is that we make the system less stable by adding the pole at the origin. 

Recall that the addition of a pole to the forward-path transfer function was shown 

to bend the root locus toward the right half plane. 

• It is also possible to use a derivative controller defined as follows:
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• The advantage of the derivative controller is that the controller will provide 

large corrections before the error becomes large. The major disadvantage of 

the derivative controller is that it will not produce a control output if the 

error is constant.

• Each of the controllers-providing proportional, integral, and derivative 

control-has its advantages and disadvantages. The disadvantages of each 

controller can be eliminated by combining all three controllers into a single PID 

Controller.

❑ The selection of the gains for the PID controller can be determined by a 

method developed by Ziegler and Nichols

❑ Based on their analysis they derived a set of rules for selecting the PID gains. The 

gains kp, ki, and kd are determined in terms of two parameters, kPu, called the 

ultimate gain, and Tu, the period of the oscillation that occurs at the ultimate gain.
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To apply this technique the root locus plot for the control system with the integral 

and derivative gains set to 0 must become marginally stable. That is, as 

the proportional gain is increased the locus must intersect the imaginary axis. The 

proportional gain, kP for which this occurs is called the ultimate gain, kpu. The 

purely imaginary roots, λ = ± iω , determine the value of Tu:  

❑ All other roots of the system must have negative real parts; that is, they must be 

in the left-hand portion of the complex s plane. If these restrictions are satisfied 

the P, PI, or PID gains easily can be determined
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EXAMPLE 7.7. : Design a PID controller for the control system shown

. Two branches of the locus cross 

the imaginary axis and all other

roots lie in the left half plane

The ultimate gain kpu is found by 

finding the gain when the root 

locus intersects the imaginary axis

• The locus intersects the imaginary axis at s = 

+ 1.25. The gain at the crossover

point can be estimated from the 

magnitude criteria: 
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• Substituting s = 1.25 into the magnitude criteria yields kPu = 19.8 

• The period of the undamped oscillation 

• Tu is obtained as follows: 

• Knowing kpu and Tu the proportional, integral, and derivative gains kp, ki, and kd

can be evaluated: 

• The response of control system 

to a step input is given in Figure
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