Aircraft Transfer Functions

First, we shall assume that the aircraft's motion consists of small deviations from its equilibrium
flight condition.

Second, we shall assume that the motion of the airplane can be analyzed by separating the
equations into two groups.

The X-force, Z-force, and pitching moment equations. And the Y-force, rolling, and yawing
moment equations form the lateral equations.

The longitudinal motion of an airplane (controls fixed) disturbed from its equilibrium flight
condition is characterized by two oscillatory modes of motion, Figurel illustrates these basic
modes.

We see that one mode is lightly damped and has a long period. This motion is called the long-
period or phugoid mode.

The second basic motion is heavily damped and has a very short period; it is appropriately
called the short-period mode.
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FIGURE 1 The phugoid and short-period motions.

1. State Variable Representation of the Equations of Motion
The linearized longitudinal equations developed earlier are simple, ordinary linear
differential equations with constant coefficients. The coefficients in the differential
equations are made up of the aerodynamic stability derivatives, mass, and inertia
characteristics of the airplane. These equations can be written as a set of first-order
differential equations, called the state-space or state variable equations and represented
mathematically as

i=Ax+B1|



where X is the state vector, g is the control vector, and the matrices A and B contain the

aircraft's dimensional stability derivatives.

The linearized longitudinal set of equations developed earlier are repeated here:
Longitudinal equations

(5 - xu) Au — X, Aw + (g cos 0) A8 = X, AS, + X;, A8,

dt
d d .
—Z, Au + [(1 - Z.) Tl Zw] Aw ~ [(u,, + Z) 3~ &sin 9(]:| A6 = Z;, AS, + Z;, A,
d d? d B
~M,Au — | M, @ + M, | Aw + a M"E A = M; AS, + Ms, A,

In practice, the force derivatives Z, and Z, usually are neglected because they
contribute very little to the aircraft response. Therefore, to simplify our presenta-
tion of the equations of motion in the state-space form we will neglect both Z, and
Z,. Rewriting the equations in the state-space form yields

An X, X, 0 —g || Au
Awl Z, Z, Uy 0 || Aw
Ag| M, + M Z, M, + MZ, M, + Mu, 0 ||Aq
A 0 0 1 0 [LAe
X, Xs, (2)
N A Zs, [ AS ]
My + M,Z, M, + MZ, || A8,
0 0
where the state vector x and control vector v are given by
Au
Aw Ad
X = , - 3
agl ™ [as ] 9
Af
and the matrices A and B are given by
X, X, 0 —g X, X,,
A - Z, Z., Uty 0 . z, Xy
L+ M, Z, M.+ M,Z, M,+ Mu, 0 My+ M,Zy My + M.Zs
0 0 1 0 0 "o

Equation (1) can be obtained by assuming a solution of the form

X = x,eM Q)
Substituting Equation (5) into Equation (1) yields
(AT —Alx, =0 (6)
1 000
P O
0010 )
00 0 1



For a nontrivial solution to exist, the determinant
(A1 — Al =0
EXAMPLE PROBLEM 4.2. Given the differential equations that follow

X +05x, — 10x, = —16
Xy — Xy + x; = 26
where x, and x, are the state variables and & is the forcing input to the system:
(a) Rewrite these equations in state space form; that is,
X = Ax + By

(b) Find the free response eigenvalues.
() What do these eigenvalues tell us about the response of this system?

Solution. Solving the differential equations for the highest order derivative yields
j] = _‘0.517[ + [0.‘72 )
.t‘z = —X + Xa + 23

or in matrix form 5| _[-05 10] X, +[_1 s
5| [-10  1.0]|x 2

which is the state space formulation
X = Ax + Bm

-0.5 10 -1
where A = [—1.0 1_0] and B = [ 5 ]

The eigenvalues of the system can be determined by solving the equation

IAT-A| =0
Substituting the A matrix into the preceding equation yields

A1 o] _[-o0s 10
0 1 -1.0 1.0
A 0}_[—0_5 10} _jA+o0s -0 |
0 A ~-1.0 1.0 10 A-— 10|

Expanding the determinant yields the characteristic equation

=0

A+05)A—10)+10=0 or A2—05\L+95=0
)(Lz = (0.25 = 3.071



The eigenvalues are complex and the real part of the root is positive. This means that the
system is dynamically unstable. If the system were given an initial disturbance, the
motion would grow sinusoidally and the frequency of the oscillation would be governed
by the imaginary part of the complex eigenvalue. The time to double amplitude can be
calculated.

~0.693  0.693

- = = 2.77
lrl.l(ll.lbl\? 1 n ] 0'25 5

The period of the sinusoidal motion can be calculated from Equation

2T 2m
Pericd = — = —— = 2.05 &
eriod o 307 S

LONGITUDINAL APPROXIMATIONS

We can think of the long-period or phugoid mode as a gradual interchange of potential
and Kkinetic energy about the equilibrium altitude and airspeed. This is illustrated in
Figure 1.

Long Period Approximation:

Here we see that the long-period mode is characterized by changes in pitch attitude,
altitude, and velocity at a nearly constant angle of attack. An approximation to the long-
period mode can be obtained by neglecting the pitching moment equation and assuming
that the change in angle of attack is 0; that is,

A
Aa=u—w Aa=0—Aw=0
0
Making these assumptions, the homogeneous longitudinal state equations reduce to the
following:
X G
gal _ | S f [Au]
Ab 0 |Lae
Uy i
The eigenvalues of the long-period approximation are obtained by solving the equation
A—=X, g
IAL-A| =0 or 7z -0
— A
Uy
— Xu
w, = ~Z.8 & 2w,




If we neglect compressibility effects, the frequency and damping ratios for the long-
period motion can be approximated by the following equations

-2 & _ L1
“r \/Euo &= AL/D

3. Short-Period Approximation
An approximation to the short-period mode of motion can be obtained by assuming
Au = 0 and dropping the X-force equation. The longitudinal state-space equations reduce

to the following:
DR PPN (1
Aé _Mw + MW.ZW Mq + M,;‘,u(} Aq

This equation can be written in terms of the angle of attack by using the relationship

toM | oM u, oM
= = = — = = “[]MW
[, da I, 3(Aw/u,) I, dw

In addition, one can replace the derivatives due to w and w with derivatives due to o and
(a’) by using the following equations. The definition of the derivative Ma is

Zu = u{)zur‘ and M(r :u[]Mn"

M,

Using these expressions, the state equations for the short-period approximation can be
rewritten as

-, | _
[Ad] _ U, [Aa]
Aq M, + M2 M, + M, Aq
Uy

The eigenvalues of the state equation can again be determined by solving the equation

MI — A\ =0
which yields




The characteristic equation for this determinant is

AZ—(MQ+Md+g5)A+Mq§£—Ma=O
) Up

The approximate short-period roots can be obtained easily from the characteristic

equation,
Z Z.\
Ayp = (Mq+M,,-,+—“)/2¢ [(Mq+Md+—“)
Uy Uy
7 1/2
— 4(Mq—3 - Ma)] /2
Uo
or in terms of the damping and frequency
Z 1/2
()
¥ Uy
Z,
gsp = _[M(; + Mri + _:I/(zwn)
Uy »

Summary of longitudinal approximations

Long period (phugoid) Short period
—- ZM
Frequency w, = uf @pp = =4 - M,
Uo Uy
M, + M, +—
Damping rati , = X Lo = — B
amping ratio p = Mﬂﬂ = zwnm

4. Short-Period Dynamics
The equation with control input from the elevator in state space form can be written as:

Ad Z,/uo l ] [Aa] [ Z, Juo ]
= + , -
[Aq ] I:er + Md‘ Za/u(] Mq + M{r Aq Mﬁ, + Mti‘zae/uﬂ [ﬁﬁe] (8 1)



The control due to the propulsion system is neglected here for simplicity. Taking the
Laplace transform of this equation yields
(s = Z./uo) Aa(s) — Aq(s) = Z; fus AS(s) (%)
— (M, + M, Z./up) Aals) + [s — (M, + Ms)] Aq(s) |
= (M;, + MiZy Jup) 85, (10)
If we divide these equations by Ad,(s) we obtain a set of algebraic equations in
terms of the transfer functions Aa(s)/AS,(s) and Ag(s)/AS,(s):

Aa(s)  Agls)
Ad,(s)  Ad.(s)

Ag(s)

(s — Z./uy) = Z; [uy (11)

_Aal(s)

Z

+[s - (M, + M,)]

Ab.(s) AS,(5) U,
Solving for Aa(s)/A8,(s) and Aq(s)/A8,(s) by Cramer’s rule yields
Zae/‘“u =1
Zs
‘ M5 + M(i‘_‘z s (Mq + Md)
Aa(s) _ N}-;, (s) _ ‘ Uy ( 13)
Ad.(s) A, s — Z./ug -1

-(M, + M. Z,[u,) s — (M, + M)
Expanded, the numerator and denominator are polynomials in the Laplace variable s.
The coefficients of the polynomials are a function of the stability derivatives
Aa(s) Ns(s) A, + B,
AS,(s) A,(s) As*+ Bs+ C
The coefficients in the numerator and denominator are given in Table 8.2. The transfer
function for the change in pitch rate to the change in elevator angle can be shown to be:

s = ZoJuo Za,/“o

(14)

Zﬁ.,
Uy

- Ma + MdZa 0 M + Ma;
Mgy NL(s) ( fu) M,

A8(s) Ayl 5 — Zafuo -1
_(Mcr + Mdza/uﬂ) § = (Mq + M&)

Aq(s) _ N§ (s) _ _As+ B,
Ad,(s) A,(s) As*+ Bs+ C

(15)

(161)



TABLE 2
Short-period transfer function approximations

A,A,, 0T A, B,B, orB, C
A (s) I ~(M, + My + Z,/u,) Z.M,Jus — M,
N3, (s) Zs,/u, M;, — M, Z;,/u,
Ng (s) M;s, + M, Z; Ju, M, Zs,fug — M, Z,, [u,

5. Long-Period or Phugoid Dynamics
The state-space equation for the long period or phugoid approximation are as follows:

X -8 X&e Xﬁ?’
Au . Au Ad
| = + Z V4 [ "’] 17
[AB] 4y [AG] —= x| As, (17
uu uﬂ uO

The Laplace transformation of the approximate equations for the long period are

(s = X.) Au(s) + g AB(s) = X, A8,(s) + X5, A8, (s) (18 )
Zs Z

Z Au(s) + s AB(s) = — — A8,(s) — =2 AS,(s) (19 )
Uy Uy U

The transfer function Au(s)/A8,(s) and A8(s)/AS.(s) can be found by setting Ad,(s)
to 0 and solving for the appropriate transfer function as follows:

Au(s) A6(s)

— _— = 20
(s Xu) Aae (S) g Aﬂ,(s) 5‘ ( )
Z
éAu(s}_{_sAﬂ(s):_j (21)
up A3, (s)  Ad(s) )
These equations can be solved to yield the transfer functions
Xs 8
—zst 5 Au(s) Xsts + gzgc,/uo
Au(s) U A5.(s) = 7 (22 )
= € ug )
24+ X5 —
A [o-x, g P
Z,
— A

Ug



In a similar manner A6(s)/A8(s) can be shown to be

_é + (Xuz&' _ ZuXBe)

) (23 )
A6(s) _  to o U |
A3,(5) oy L8
u Uy

The transfer functions can be written in a symbolic form in the following manner:

Au(s) N 5.(5) _ As+ B,

= == _ 24
AS.(s)  B,(s) As’+ Bs + C (24)
AB(s) N5, A+ B,
AS,(s) A,(s) As*+ Bs+ C (25)
Long-period transfer function approximations
A A,,orA, B,B,, or B, C
A, (s) 1 -X, —Z,8/uy
NE,(S} Xa, ng,,/Hn
Nge(-‘} _Za,/uo X, Zs,fuo - ZuXa.,/“n

where A,, B,, and so forth are defined in Table 8.3. The transfer functions for the
propulsive control, that is, Au(s)/Aé,(s) and A8(s)/Ad,(s), have the same form
except that the derivatives with respect to , are replaced by derivatives with
respect to &r. Therefore, Table 8.3 can be used for both aerodynamic and propul-
sive control transfer functions provided that the appropriate control derivatives are
used.

6. Roll Dynamics: The equation of motion for a pure rolling motion,
Ap — L, Ap = L; A3, (25)

The transfer function Ap(s)/8,.(s) and A¢(s) /AS,.(s) can be obtained by taking the
Laplace transform of the roll equation:

Ap(b‘) L&
s—L)A =L, AS (s = :
(T P) P(S) d, a(b) ASJ(S) § — LP ( 26 )
Pt the roll rate Ap is defined as Ad; therefore, Ap(s) = sAd(s) ( 27 )
Adls) _ _ Es, (28 )

AS.(s) s(s — L,



7. Dutch Roll Approximation: The final simplified transfer function we will develop is for
the Dutch roll motion. The approximate equations can be shown to be

"38 _ Yﬂ/u(} —(1 — Yr/un)][ﬁB] + [Ys,/uo 0 :H:&ar]
AF NB Nr Ar Nﬁr Nsu AS‘,
Taking the Laplace transform and rearranging yields

(s = Ya/uo) AB(s) + (1 — Y, /uo) Ar(s) = Y5 /up AS,(s)
—Ng AB(s) + (s — N,) Ar(s) = N5 A8,(s) + N; AS.(s)

The transfer functions AB(s)/AS,(s), Ar(s)/AS,(s), AB(s)/AS,(s), and Ar(s)/AS,(s)
can be obtained by setting A8,(s) to 0 and solving for AB(s) /A8, (s) and Ar(s) /AS,(s).
Next set AS,(s) equal to 0 and solve for AB(s)/A8,(s) and Ar (s)/A8,(s). The transfer
functions AB(s)/A8,(s) and Ar(s)/AS,(s) are obtained as follows:

Aﬁ(SJ _ Ar (S) 28
AB(S) Ar(s)
— -~ = N,
Neas T ¢ M as = Mo
Solving for the transfer function yields
Yﬁr/u() I — Kf!uﬂ‘ 5 — YB/HO Y.:;r/u()
ABGs) _ I No s—N Ar(s) ~Ns N
A8, (s) s — Yeluy 1 = Y,/ug AS,(s) |s — Yalup 1 — Y, [ug
_NB § — Nr _Nﬁ s — N,.
AB(s) _ NB(s) _  Ags + By Ar(s) _ NE(s) As + B,

Aar(S) ﬁ]_)R(S) AS2 + BS + C AB,(S} - ADR(S) - ASZ -+ BS + C

The coefficients of the polynomials in the Dutch roll transfer functions are included in following
Table 3. The denominator coefficients are in the first row and the numerator coefficients are
defined for each transfer function in the subsequent rows.



Dutch roll transfer function approximations

A, A, orAr B, Bg, or B, C
Apk(s) ] ~(Ys + uyN,)/uy (YgN, — Ng¥, + Nguy)/u,
NE (s) Y. /uy (Y,N;, — Y5 N, — Nj ug) fuy
5(5) Ns, (Np¥s, — YaNs )/ uo
N (s) 0 (Y,Ns, — uyNy )/ ug
N5 () N, —Yg Ny, /iy

8. CONTROL SURFACE ACTUATOR:
In addition to the various transfer functions that represent the aircraft dynamics, we need
to develop the transfer functions for the other elements that make up the control system.
This would include the servo actuators to deflect the aerodynamic control surfaces as
well as the transfer function for any sensors in the control loop; for example, an attitude
gyro, rate gyro, altimeter, or velocity sensor. The transfer functions for most sensors can
be approximated by a gain, k.
Control surface servo actuators can be either electrical, hydraulic, pneumatic, or some
combination of the three. The transfer function is similar for each type. We will develop
the control surface servo actuator transfer function for a servo based on an electric motor.

motor FIGURE 1
v Ken o Motor with rate feedback.
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rate feedback

B,s
0 &,
T, = k,v, 10=T, v, Is?
o___ Kk i 1
0. s+ 1) where T = 5 and k= B

If Tm ( time constant), IS small, the motor responds rapidly and the transfer function of the
motor with rate feedback can be approximated as:



6 k

v, )
A simple position control servo system can be developed from the control diagram shown

in Figure 2. The motor shaft angle, 0, can be replaced by the flap angle, Of, of the control
surface. For the positional feedback system the closed loop transfer function can be
shown to have the following form:

o . k=1/k, and 1= If_;

where fRa

The time constant of the control surface servo is typical of the order of 0.1 s
DISPLACEMENT AUTOPILOT

One of the earliest autopilots to be used for aircraft control is the so-called displacement
autopilot. A displacement type autopilot can be used to control the angular orientation of
the airplane. Conceptually, the displacement autopilot works in the following manner. In
a pitch attitude displacement autopilot, the pitch angle is sensed by a vertical gyro and
compared with the desired pitch angle to create an error angle. The difference or error in
pitch attitude is used to produce proportional displacements of the elevator so that the
error signal is reduced. Figure 3 is a block diagram of either a pitch or roll angle
displacement autopilot.

The heading angle of the airplane also can be controlled using a similar scheme. The
heading angle is sensed by a directional gyro and the error signal is used to displace the
rudder to reduce the error signal. A displacement heading autopilot also is shown in
Figure 4.

In practice, the displacement autopilot is engaged once the airplane has been trimmed in
straight and level flight.

v, T8 + 1

% I'vertical | ® [ control | % | Aircraft | ¢ FIGURE3
¢, | 9vro e, | servo 8y dynamics & Aroll' or pitch displacement
— autopilot.
e ——
v Directional | | Control ﬁrr Aircraft v .

gyro Servo dynamics
FIGURE 5
A heading displacement autopilot.

To maneuver the airplane while the autopilot is engaged, the pilot must adjust the
commanded signals. For example, the airplane can be made to climb or descend by



changing the pitch command. Turns can be achieved by introducing the desired bank
angle while simultaneously changing the heading command.
10. SUMMERY

Longitedinal equations

‘ I.!—I \.I} L] X Aw 4+ (g cos i,) a8 .‘ﬁ.l_._ _"j:i-_, T ‘:‘_ .,.'h"i_,
\ i |

I.!

> £ Sin H.l af = A, Ab, + £y Abyp
i

& l futht llu_ + Z) d

FANL TR ‘II i |
dr

d*

'|.I A -
; M — ] Al M, AS + M, AS;
i dr )

M. A {'.r ::r F M. ] Ao + (‘

Combined Terms

Ad -+ Afgeosbo = XNubdu + XNwlw 4 X5 de + X dr
Aib + Afgsin @y — uAP = Z,Au + Z,Aw + ZyAvh + Z,A0 + Z4 8, + Zg br
Afl = MuAu + My Aw + MeAdic + MoA8 + Ms, 8. + M, br

Longitudinal equations

(a% - xu) Au~ X, Aw + (g cos B) &9 = X, AS, + Xy, 45,

-7, Au + [(1 - z“-.)% - zw] Aw - [(u‘, +2,) 21(1: ~ gsin a,] AD = Z, AS, + Z;, A5,

d e d
~M, Au - (M,;. ot Mw) Aw + (@ - M, &) D = M, A8, + M, AB,

Rewriting in state space

Au X, X, 0 —g || Au
Aw| Z, Z, Uy 0 (| Aw
Ag| ™ M, + Mz, M, +MZ, M, +Mu 0 |Ag
Ad 0 0 1 0 |Lag
Xs Xs, (2)
. Z Zs, [Aa]
My + MZy M, + M,Z; | A3,

0 0



where the state vector x and control vector v are given by

Au
- , [ AS ]
aql” 7 Las X, X, 0 -
A A= Z, Z, Uy 0
L+ MZ, M+ MZ, M,+Mu, 0
and the matrices A and B are given by 0 0 1 0
Characteristic equation Al —-A|=0

X = Ax + By

Long Period Approximation:

An approximation to the long-period mode can be obtained by neglecting the pitching moment
equation and assuming that the change in angle of attack is 0;

the homogeneous longitudinal state equations reduce to the following:

X, IAL-A| =0 Ao K8
Au “ T8 IMAu AL-Al = or Z,
[AQ] = [i 0 ][Aa] o

U

=0

Short-Period Approximation: An approximation to the short-period mode of motion can be
obtained by assuming Au = 0 and dropping the X-force equation

o S RGPV (P
Ag | M, + Mz, M, + Mul| Ag IAT—A| =0
A 5 !
& Uy A
w-], 5L L

Uy

Summary of longitudinal approximations

Long period (phugoid) Short period
- zZ.M
Frequency w, = -] @, = —= M,
o Uy
Z
x M, + M, +—
. . _ L _ Uy
Damping ratio g = %o L = e




1. Short-Period Dyvnamics Long-Period or Phugoid Dynamics

¥ L &y fuy X s, &
F
M, + M, M M, — —_
Mgl My | AR A AL (1) __Z,'
A8x  Ats | 5 = Zug -1 | Au(s) . Hy
-, + M EJe) & — (M, + M) =
Aglih _ NS s+ By Ad,(s) s— X, g
ASish  ALls) Ast 4+ B+ O i 167}
. w2 M
Aarlst  Nilsh M,, H'u,_ 1AM+ M) . l;n N
B4 Agle | s - Zu i Auls) ATt Bl St
(=M, + M. Zfw) 2= (M, + M) Adls) X — L.

Aads)  Nils) A+ B Auls) N Ni_{.‘i‘]' - As + B,

Bl A Af+m+c M Ad.(s)  Als) As®+ Bs+ C
B, , (G BK)

M_ll ~ :_ - § _lr I,
Ml” i r'l - ‘r!"'l

TABLE 2 L

= [
Shor-perbed iransfer function approvismations Mls} H;._ A-ﬂ-"- 4 Hﬁ
Ay oe A, L L = . = 3

A1) ' =AM, Mo Em) M - M, 'Jiﬁ" (s) '11'{5} As® + Bs + C

My F A, My, = M Z fa,

N isl My + MoE e ML~ MU T

TABLE 2

Short-period transfer function approximations
T A B A O N N 8 S T T SR SRR S

A,A,, 0T A, B,B, orB, C
A (s) I —(M, + M, + Z,/uy) Z,M,Juy — M,
g,(s} Z&/uo M, — qua,/uu

NLG) My + MiZfuy  MoZafug — My Z,/uy




Long-period transfer function approximations

A A orA, B,B, orB, G
A.(s) | -X. =Z.8/u
Nl(” X~ RZQ/“O
als) =2y Juy X.ZyJug = Z. Xy, [uy
Roll Dynamics
Pat the roll rate Ap 1s defined as Ad therefore,  Jpls) = sddis) (1)
Adls) L, (28)

Ad(sh  sls = L)

Aa(" = 'vt(l’ AJ‘ + BJ Ar(s) N{(J) 5

As + B,

Dutch Roll Approximation - -
App 43(0 Sl A BAC TG Beel)
Dutch roll transfer function approxineations

AcAg or A, BB, o B, c
Aulny 1 ¥, + w N/, (N, = Nu¥, & Now)n,
NLD Y, IENL NN, = N, w)lu,
Nuln) ' (No¥e — ¥y Nolfu
N 0 (LN~ N )
Ny No YN, fa,

11.

As* 4 By + C



