
261

CHAPTER OUTLINE

5–1 Basic Combinational Logic Circuits

5–2 Implementing Combinational Logic

5–3 The Universal Property of NAND and

NOR Gates

5–4 Combinational Logic Using NAND and

NOR Gates

5–5 Pulse Waveform Operation

5–6 Combinational Logic with VHDL

5–7 Troubleshooting

 Applied Logic

CHAPTER OBJECTIVES

■ Analyze basic combinational logic circuits, such

as AND-OR, AND-OR-Invert, exclusive-OR, and

exclusive-NOR

■ Use AND-OR and AND-OR-Invert circuits to

implement sum-of-products (SOP) and product-of-

sums (POS) expressions

■ Write the Boolean output expression for any

combinational logic circuit

■ Develop a truth table from the output expression for

a combinational logic circuit

■ Use the Karnaugh map to expand an output

expression containing terms with missing variables

into a full SOP form

■ Design a combinational logic circuit for a given

Boolean output expression

■ Design a combinational logic circuit for a given

truth table

■ Simplify a combinational logic circuit to its minimum

form

■ Use NAND gates to implement any combinational

logic function

VISIT THE WEBSITE

Study aids for this chapter are available at

http://www.pearsonglobaleditions.com/floyd

INTRODUCTION

In Chapters 3 and 4, logic gates were discussed on an

individual basis and in simple combinations. You were

introduced to SOP and POS implementations, which

are basic forms of combinational logic. When logic gates

are connected together to produce a specified output for

certain specified combinations of input variables, with no

storage involved, the resulting circuit is in the category

of combinational logic. In combinational logic, the out-

put level is at all times dependent on the combination

of input levels. This chapter expands on the material

introduced in earlier chapters with a coverage of the

analysis, design, and troubleshooting of various combi-

national logic circuits. The VHDL structural approach is

introduced and applied to combinational logic.

■ Universal gate

■ Negative-OR

■ Negative-AND

■ Component

■ Signal

■ Node

■ Signal tracing

■ Use NOR gates to implement any combinational

logic function

■ Analyze the operation of logic circuits with pulse inputs

■ Write VHDL programs for simple logic circuits

■ Troubleshoot faulty logic circuits

■ Troubleshoot logic circuits by using signal tracing

and waveform analysis

■ Apply combinational logic to an application

KEY TERMS

Key terms are in order of appearance in the chapter.

Combinational
Logic Analysis

5CHAPTER

262 Combinational Logic Analysis

5–1 Basic Combinational Logic Circuits

In Chapter 4, you learned that SOP expressions are implemented with an AND gate for each

product term and one OR gate for summing all of the product terms. As you know, this SOP

implementation is called AND-OR logic and is the basic form for realizing standard Boolean

functions. In this section, the AND-OR and the AND-OR-Invert are examined; the exclusive-

OR and exclusive-NOR gates, which are actually a form of AND-OR logic, are also covered.

After completing this section, you should be able to

u Analyze and apply AND-OR circuits

u Analyze and apply AND-OR-Invert circuits

u Analyze and apply exclusive-OR gates

u Analyze and apply exclusive-NOR gates

AND-OR Logic

Figure 5–1(a) shows an AND-OR circuit consisting of two 2-input AND gates and one

2-input OR gate; Figure 5–1(b) is the ANSI standard rectangular outline symbol. The Boolean

expressions for the AND gate outputs and the resulting SOP expression for the output X are

shown on the diagram. In general, an AND-OR circuit can have any number of AND gates,

each with any number of inputs.

The truth table for a 4-input AND-OR logic circuit is shown in Table 5–1. The interme-

diate AND gate outputs (the AB and CD columns) are also shown in the table.

AND-OR logic produces an SOP
expression.

A

B

C

D CD

AB SOP

X = AB + CD

(a) Logic diagram (ANSI standard distinctive
shape symbols)

A

B

C

D

X

(b) ANSI standard rectangular outline symbol

&

&

≥1

FIGURE 5–1 An example of AND-OR logic. Open file F05-01 to verify the operation.

A Multisim tutorial is available on the website.

TABLE 5–1

Truth table for the AND-OR logic in Figure 5–1.

Inputs Output

A B C D AB CD X

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 1 0 0 0 0

0 0 1 1 0 1 1

0 1 0 0 0 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 1 1 0 1 1

1 0 0 0 0 0 0

1 0 0 1 0 0 0

1 0 1 0 0 0 0

1 0 1 1 0 1 1

1 1 0 0 1 0 1

1 1 0 1 1 0 1

1 1 1 0 1 0 1

1 1 1 1 1 1 1

Basic Combinational Logic Circuits 263

An AND-OR circuit directly implements an SOP expression, assuming the complements

(if any) of the variables are available. The operation of the AND-OR circuit in Figure 5–1

is stated as follows:

For a 4-input AND-OR logic circuit, the output X is HIGH (1) if both input A and

input B are HIGH (1) or both input C and input D are HIGH (1).

EXAMPLE 5–1

In a certain chemical-processing plant, a liquid chemical is used in a manufacturing

process. The chemical is stored in three different tanks. A level sensor in each tank

produces a HIGH voltage when the level of chemical in the tank drops below a speci-

fied point.

Design a circuit that monitors the chemical level in each tank and indicates when the

level in any two of the tanks drops below the specified point.

Solution

The AND-OR circuit in Figure 5–2 has inputs from the sensors on tanks A, B, and C as

shown. The AND gate G1 checks the levels in tanks A and B, gate G2 checks tanks A

and C, and gate G3 checks tanks B and C. When the chemical level in any two of the

tanks gets too low, one of the AND gates will have HIGHs on both of its inputs, causing

its output to be HIGH; and so the final output X from the OR gate is HIGH. This HIGH

input is then used to activate an indicator such as a lamp or audible alarm, as shown in

the figure.

Low-level
indicator

X

G3

G2

G1

A B C

FIGURE 5–2

Related Problem*

Write the Boolean SOP expression for the AND-OR logic in Figure 5–2.

*Answers are at the end of the chapter.

AND-OR-Invert Logic

When the output of an AND-OR circuit is complemented (inverted), it results in an AND-OR-

Invert circuit. Recall that AND-OR logic directly implements SOP expressions. POS expres-

sions can be implemented with AND-OR-Invert logic. This is illustrated as follows, starting

with a POS expression and developing the corresponding AND-OR-Invert (AOI) expression.

X = (A + B)(C + D) = (AB)(CD) = (AB)(CD) = AB + CD = AB + CD

The logic diagram in Figure 5–3(a) shows an AND-OR-Invert circuit with four inputs

and the development of the POS output expression. The ANSI standard rectangular outline

symbol is shown in part (b). In general, an AND-OR-Invert circuit can have any number of

AND gates, each with any number of inputs.

264 Combinational Logic Analysis

The operation of the AND-OR-Invert circuit in Figure 5–3 is stated as follows:

For a 4-input AND-OR-Invert logic circuit, the output X is LOW (0) if both input

A and input B are HIGH (1) or both input C and input D are HIGH (1).

A truth table can be developed from the AND-OR truth table in Table 5–1 by simply chang-

ing all 1s to 0s and all 0s to 1s in the output column.

A

B

C

D CD

AB POS

AB + CD = (A + B)(C + D)

A

B

C

D

X

(b)

&

&

≥1

AB + CD

(a)

FIGURE 5–3 An AND-OR-Invert circuit produces a POS output. Open file F05-03

to verify the operation.

EXAMPLE 5–2

The sensors in the chemical tanks of Example 5–1 are being replaced by a new model

that produces a LOW voltage instead of a HIGH voltage when the level of the chemical

in the tank drops below a critical point.

Modify the circuit in Figure 5–2 to operate with the different input levels and still

produce a HIGH output to activate the indicator when the level in any two of the tanks

drops below the critical point. Show the logic diagram.

Solution

The AND-OR-Invert circuit in Figure 5–4 has inputs from the sensors on tanks A, B,

and C as shown. The AND gate G1 checks the levels in tanks A and B, gate G2 checks

tanks A and C, and gate G3 checks tanks B and C. When the chemical level in any two

of the tanks gets too low, each AND gate will have a LOW on at least one input, caus-

ing its output to be LOW and, thus, the final output X from the inverter is HIGH. This

HIGH output is then used to activate an indicator.

X

G3

G2

G1

A B C

Low-level
indicator

FIGURE 5–4

Related Problem

Write the Boolean expression for the AND-OR-Invert logic in Figure 5–4 and show

that the output is HIGH (1) when any two of the inputs A, B, and C are LOW (0).

Basic Combinational Logic Circuits 265

Exclusive-OR Logic

The exclusive-OR gate was introduced in Chapter 3. Although this circuit is considered a

type of logic gate with its own unique symbol, it is actually a combination of two AND

gates, one OR gate, and two inverters, as shown in Figure 5–5(a). The two ANSI standard

exclusive-OR logic symbols are shown in parts (b) and (c).

The XOR gate is actually a
combination of other gates.

A

X = AB + AB

(b) ANSI distinctive(a) Logic diagram

B

X
A

B
X

A

B

= 1

(c) ANSI rectangular

shape symbol outline symbol

FIGURE 5–5 Exclusive-OR logic diagram and symbols. Open file F05-05 to verify the

operation.

The output expression for the circuit in Figure 5–5 is

X = AB + AB

Evaluation of this expression results in the truth table in Table 5–2. Notice that the output

is HIGH only when the two inputs are at opposite levels. A special exclusive-OR opera-

tor � is often used, so the expression X = AB + AB can be stated as “X is equal to A

exclusive-OR B” and can be written as

X = A � B

Exclusive-NOR Logic

As you know, the complement of the exclusive-OR function is the exclusive-NOR, which

is derived as follows:

X = AB + AB = (AB) (AB) = (A + B)(A + B) = A B + AB

Notice that the output X is HIGH only when the two inputs, A and B, are at the same level.

The exclusive-NOR can be implemented by simply inverting the output of an exclusive-

OR, as shown in Figure 5–6(a), or by directly implementing the expression A B + AB, as

shown in part (b).

TABLE 5–2

Truth table for an exclusive-
OR.

A B X

0 0 0

0 1 1

1 0 1

1 1 0

A

B

X

XOR

(a) X = AB + AB

A

B X

AB

(b) X = AB + AB

AB

FIGURE 5–6 Two equivalent ways of implementing the exclusive-NOR. Open files

F05-06 (a) and (b) to verify the operation.

266 Combinational Logic Analysis

Related Problem

How would you verify that a correct even-parity bit is generated for each combination

of the four data bits?

EXAMPLE 5–3

Use exclusive-OR gates to implement an even-parity code generator for an original

4-bit code.

Solution

Recall from Chapter 2 that a parity bit is added to a binary code in order to provide

error detection. For even parity, a parity bit is added to the original code to make the

total number of 1s in the code even. The circuit in Figure 5–7 produces a 1 output

when there is an odd number of 1s on the inputs in order to make the total number of

1s in the output code even. A 0 output is produced when there is an even number of 1s

on the inputs.

A0

A1

Data bits Even parity bit

Data bits

A2

A3

FIGURE 5–7 Even-parity generator.

EXAMPLE 5–4

Use exlusive-OR gates to implement an even-parity checker for the 5-bit code generated

by the circuit in Example 5–3.

Solution

The circuit in Figure 5–8 produces a 1 output when there is an error in the five-bit code

and a 0 when there is no error.

A0

A1

Data bits

Even parity bit
Error

A2

A3

FIGURE 5–8 Even-parity checker.

Related Problem

How would you verify that an error is indicated when the input code is incorrect?

Implementing Combinational Logic 267

SECTION 5–1 CHECKUP

Answers are at the end of the chapter.

 1. Determine the output (1 or 0) of a 4-variable AND-OR-Invert circuit for each of the

following input conditions:

(a) A = 1, B = 0, C = 1, D = 0 (b) A = 1, B = 1, C = 0, D = 1

(c) A = 0, B = 1, C = 1, D = 1

 2. Determine the output (1 or 0) of an exclusive-OR gate for each of the following input

conditions:

(a) A = 1, B = 0 (b) A = 1, B = 1

(c) A = 0, B = 1 (d) A = 0, B = 0

 3. Develop the truth table for a certain 3-input logic circuit with the output expression

X = ABC + ABC + A B C + ABC + ABC.

 4. Draw the logic diagram for an exclusive-NOR circuit.

For every Boolean expression there
is a logic circuit, and for every logic
circuit there is a Boolean expression.

5–2 Implementing Combinational Logic

In this section, examples are used to illustrate how to implement a logic circuit from a

Boolean expression or a truth table. Minimization of a logic circuit using the methods cov-

ered in Chapter 4 is also included.

After completing this section, you should be able to

u Implement a logic circuit from a Boolean expression

u Implement a logic circuit from a truth table

u Minimize a logic circuit

From a Boolean Expression to a Logic Circuit

Let’s examine the following Boolean expression:

X = AB + CDE

A brief inspection shows that this expression is composed of two terms, AB and CDE,

with a domain of five variables. The first term is formed by ANDing A with B, and the

second term is formed by ANDing C, D, and E. The two terms are then ORed to form the

output X. These operations are indicated in the structure of the expression as follows:

 AND

X = AB + CDE

 OR

Note that in this particular expression, the AND operations forming the two individual

terms, AB and CDE, must be performed before the terms can be ORed.

To implement this Boolean expression, a 2-input AND gate is required to form the term

AB, and a 3-input AND gate is needed to form the term CDE. A 2-input OR gate is then

required to combine the two AND terms. The resulting logic circuit is shown in Figure 5–9.

As another example, let’s implement the following expression:

X = AB(CD + EF)

InfoNote

Many control programs require

logic operations to be performed

by a computer. A driver program

is a control program that is used

with computer peripherals. For

example, a mouse driver requires

logic tests to determine if a button

has been pressed and further

logic operations to determine if

it has moved, either horizontally

or vertically. Within the heart of a

microprocessor is the arithmetic

logic unit (ALU), which performs

these logic operations as directed

by program instructions. All of the

logic described in this chapter can

also be performed by the ALU,

given the proper instructions.

268 Combinational Logic Analysis

AB

B

X = AB + CDE

A

E
D

CDE

C

FIGURE 5–9 Logic circuit for X 5 AB 1 CDE.

E

A

D

B
C

C

D

A

B

E

F EF

CD X = AB(CD + EF)

CD + EF

D

F
ABEF

ABCD

 X = ABCD + ABEF

(b) Sum-of-products implementation of the circuit in part (a)(a)

FIGURE 5–10 Logic circuits for X = AB(CD + EF) = ABCD + ABEF.

A breakdown of this expression shows that the terms AB and (CD + EF) are ANDed.

The term CD + EF is formed by first ANDing C and D and ANDing E and F, and

then ORing these two terms. This structure is indicated in relation to the expression as

follows:

 AND

 NOT

 OR

X = AB(CD + EF)

 AND

Before you can implement the final expression, you must create the sum term CD + EF;

but before you can get this term; you must create the product terms CD and EF; but before

you can get the term CD, you must create D. So, as you can see, the logic operations must

be done in the proper order.

The logic gates required to implement X = AB(CD + EF) are as follows:

 1. One inverter to form D

 2. Two 2-input AND gates to form CD and EF

 3. One 2-input OR gate to form CD + EF

 4. One 3-input AND gate to form X

The logic circuit for this expression is shown in Figure 5–10(a). Notice that there is a

maximum of four gates and an inverter between an input and output in this circuit (from

input D to output). Often the total propagation delay time through a logic circuit is a major

consideration. Propagation delays are additive, so the more gates or inverters between input

and output, the greater the propagation delay time.

Unless an intermediate term, such as CD + EF in Figure 5–10(a), is required as an out-

put for some other purpose, it is usually best to reduce a circuit to its SOP form in order to

reduce the overall propagation delay time. The expression is converted to SOP as follows,

and the resulting circuit is shown in Figure 5–10(b).

AB(CD + EF) = ABCD + ABEF

Implementing Combinational Logic 269

TABLE 5–3

Inputs Output

Product TermA B C X

0 0 0 0

0 0 1 0
0 1 0 0

0 1 1 1 ABC

1 0 0 1 AB C
1 0 1 0
1 1 0 0
1 1 1 0

From a Truth Table to a Logic Circuit

If you begin with a truth table instead of an expression, you can write the SOP expression

from the truth table and then implement the logic circuit. Table 5–3 specifies a logic function.

The Boolean SOP expression obtained from the truth table by ORing the product terms

for which X 5 1 is

X = ABC + AB C

The first term in the expression is formed by ANDing the three variables A, B, and C. The

second term is formed by ANDing the three variables A, B, and C.

The logic gates required to implement this expression are as follows: three inverters to

form the A, B, and C variables; two 3-input AND gates to form the terms ABC and AB C;

and one 2-input OR gate to form the final output function, ABC + AB C.

The implementation of this logic function is illustrated in Figure 5–11.

EXAMPLE 5–5

Design a logic circuit to implement the operation specified in the truth table of Table 5–4.

TABLE 5–4

Inputs Output

Product TermA B C X

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1 ABC

1 0 0 0

1 0 1 1 ABC

1 1 0 1 ABC

1 1 1 0

A

B X = ABC + ABC

C

A
ABC

B

C
ABC

FIGURE 5–11 Logic circuit for X = ABC + AB C. Open file F05-11 to verify the

operation.

Solution

Notice that X 5 1 for only three of the input conditions. Therefore, the logic expression is

X = ABC + ABC + ABC

270 Combinational Logic Analysis

EXAMPLE 5–6

Develop a logic circuit with four input variables that will only produce a 1 output when

exactly three input variables are 1s.

Solution

Out of sixteen possible combinations of four variables, the combinations in which there are

exactly three 1s are listed in Table 5–5, along with the corresponding product term for each.

TABLE 5–5

A B C D Product Term

0 1 1 1 ABCD

1 0 1 1 ABCD

1 1 0 1 ABCD

1 1 1 0 ABCD

The product terms are ORed to get the following expression:

X = ABCD + ABCD + ABCD + ABCD

This expression is implemented in Figure 5–13 with AND-OR logic.

A
ABC

ABC

A

ABC
X

BC

BC

Related Problem

Determine if the logic circuit of Figure 5–12 can be simplified.

FIGURE 5–12 Open file F05-12 to

verify the operation.

ABCD

X

ABCD

ABCD

ABCD

D C B A FIGURE 5–13 Open file

F05-13 to verify the operation.

The logic gates required are three inverters, three 3-input AND gates and one 3-input

OR gate. The logic circuit is shown in Figure 5–12.

Implementing Combinational Logic 271

EXAMPLE 5–8

Minimize the combinational logic circuit in Figure 5–16. Inverters for the comple-

mented variables are not shown.

Related Problem

Determine if the logic circuit of Figure 5–13 can be simplified.

X

A

A
B
C

B

C

D

A

B

C

D

A

B

C

D

FIGURE 5–16

EXAMPLE 5–7

Reduce the combinational logic circuit in Figure 5–14 to a minimum form.

A

B

C

D

X

FIGURE 5–14

Open file F05-14 to

verify that this circuit is

equivalent to the gate

in Figure 5–15.

Solution

The expression for the output of the circuit is

X = (A B C)C + A B C + D

Applying DeMorgan’s theorem and Boolean algebra,

 X = (A + B + C)C + A + B + C + D

 = AC + BC + CC + A + B + C + D

 = AC + BC + C + A + B + C + D

 = C(A + B + 1) + A + B + D

 X = A + B + C + D

The simplified circuit is a 4-input OR gate as shown in Figure 5–15.

A
B
C
D

X

FIGURE 5–15

Related Problem

Verify the minimized expression A 1 B 1 C 1 D using a Karnaugh map.

272 Combinational Logic Analysis

Solution

The output expression is

X = AB C + ABC D + A B CD + A B C D

Expanding the first term to include the missing variables D and D,

 X = AB C(D + D) + ABC D + A B CD + A B C D

 = AB CD + AB C D + ABC D + A B CD + A B C D

This expanded SOP expression is mapped and simplified on the Karnaugh map in Fig-

ure 5–17(a). The simplified implementation is shown in part (b). Inverters are not shown.

1

(a)

AB
CD

00 01 11 10

00

01

11

10

BC

ACD1

1

1

(b)

X

B

C

A
C
D

1

FIGURE 5–17

Related Problem

Develop the POS equivalent of the circuit in Figure 5–17(b). See Section 4–10.

SECTION 5–2 CHECKUP

 1. Implement the following Boolean expressions as they are stated:

(a) X = ABC + AB + AC (b) X = AB(C + DE)

 2. Develop a logic circuit that will produce a 1 on its output only when all three inputs

are 1s or when all three inputs are 0s.

 3. Reduce the circuits in Question 1 to minimum SOP form.

5–3 The Universal Property of NAND and NOR Gates

Up to this point, you have studied combinational circuits implemented with AND gates,

OR gates, and inverters. In this section, the universal property of the NAND gate and the

NOR gate is discussed. The universality of the NAND gate means that it can be used as

an inverter and that combinations of NAND gates can be used to implement the AND,

OR, and NOR operations. Similarly, the NOR gate can be used to implement the inverter

(NOT), AND, OR, and NAND operations.

After completing this section, you should be able to

u Use NAND gates to implement the inverter, the AND gate, the OR gate, and

the NOR gate

u Use NOR gates to implement the inverter, the AND gate, the OR gate, and

the NAND gate

The Universal Property of NAND and NOR Gates 273

The NAND Gate as a Universal Logic Element

The NAND gate is a universal gate because it can be used to produce the NOT, the AND,

the OR, and the NOR functions. An inverter can be made from a NAND gate by connecting

all of the inputs together and creating, in effect, a single input, as shown in Figure 5–18(a)

for a 2-input gate. An AND function can be generated by the use of NAND gates alone,

as shown in Figure 5–18(b). An OR function can be produced with only NAND gates, as

illustrated in part (c). Finally, a NOR function is produced as shown in part (d).

AAA A

(a) One NAND gate used as an inverter

AB
A

B

A

B
AB = AB

(b) Two NAND gates used as an AND gate

AB

A + B
A

B

A

B

A

(c) Three NAND gates used as an OR gate

AB = A + B

B

G
1

G
2

G
3

A + B
A

B

A

B

(d) Four NAND gates used as a NOR gate

A + B

A

B

G
1

G
2

G
3

G
4

AB = A + B

FIGURE 5–18 Universal application of NAND gates. Open files F05-18(a), (b), (c), and

(d) to verify each of the equivalencies.

In Figure 5–18(b), a NAND gate is used to invert (complement) a NAND output to form

the AND function, as indicated in the following equation:

X = AB = AB

In Figure 5–18(c), NAND gates G1 and G2 are used to invert the two input variables

before they are applied to NAND gate G3. The final OR output is derived as follows by

application of DeMorgan’s theorem:

X = A B = A + B

In Figure 5–18(d), NAND gate G4 is used as an inverter connected to the circuit of part (c)

to produce the NOR operation A + B.

The NOR Gate as a Universal Logic Element

Like the NAND gate, the NOR gate can be used to produce the NOT, AND, OR, and

NAND functions. A NOT circuit, or inverter, can be made from a NOR gate by connecting

all of the inputs together to effectively create a single input, as shown in Figure 5–19(a)

with a 2-input example. Also, an OR gate can be produced from NOR gates, as illustrated

in Figure 5–19(b). An AND gate can be constructed by the use of NOR gates, as shown in

Combinations of NAND gates can be
used to produce any logic function.

Combinations of NOR gates can be
used to produce any logic function.

274 Combinational Logic Analysis

Figure 5–19(c). In this case the NOR gates G1 and G2 are used as inverters, and the final

output is derived by the use of DeMorgan’s theorem as follows:

X = A + B = AB

Figure 5–19(d) shows how NOR gates are used to form a NAND function.

SECTION 5–3 CHECKUP

 1. Use NAND gates to implement each expression:

(a) X = A + B (b) X = AB

 2. Use NOR gates to implement each expression:

(a) X = A + B (b) X = AB

5–4 Combinational Logic Using NAND and NOR Gates

In this section, you will see how NAND and NOR gates can be used to implement a logic

function. Recall from Chapter 3 that the NAND gate also exhibits an equivalent opera-

tion called the negative-OR and that the NOR gate exhibits an equivalent operation called

the negative-AND. You will see how the use of the appropriate symbols to represent the

equivalent operations makes “reading” a logic diagram easier.

After completing this section, you should be able to

u Use NAND gates to implement a logic function

u Use NOR gates to implement a logic function

u Use the appropriate dual symbol in a logic diagram

AAA A

(a) One NOR gate used as an inverter

A

B
A + B

(b) Two NOR gates used as an OR gate

A + B
A

B

A + B

A

B

(c) Three NOR gates used as an AND gate

AB
A

B
A + B = AB

A

B

G
1

G
2

G
3

A

B

A

B

(d) Four NOR gates used as a NAND gate

AB

A

B

AB

G
1

G
2

G
4

G
3

AB

FIGURE 5–19 Universal application of NOR gates. Open files F05-19(a), (b), (c), and (d)

to verify each of the equivalencies.

Combinational Logic Using NAND and NOR Gates 275

NAND Logic

As you have learned, a NAND gate can function as either a NAND or a negative-OR

because, by DeMorgan’s theorem,

AB = A + B

NAND negative-OR

Consider the NAND logic in Figure 5–20. The output expression is developed in the

following steps:

 X = (AB)(CD)

 = (A + B)(C + D)

 = (A + B) + (C + D)

 = A B + C D

 = AB + CD

A

B

C

D

G2

G3

G1 X = AB + CD

CD

AB

FIGURE 5–20 NAND logic for X 5 AB 1 CD.

As you can see in Figure 5–20, the output expression, AB 1 CD, is in the form of two

AND terms ORed together. This shows that gates G2 and G3 act as AND gates and that

gate G1 acts as an OR gate, as illustrated in Figure 5–21(a). This circuit is redrawn in

part (b) with NAND symbols for gates G2 and G3 and a negative-OR symbol for gate G1.

Notice in Figure 5–21(b) the bubble-to-bubble connections between the outputs of

gates G2 and G3 and the inputs of gate G1. Since a bubble represents an inversion, two

�

A
G2B

G3
C

D

AB CD+

(c) AND-OR equivalent

G1

A
G2B

G3
C

D

G1 AB CD+

(b) Equivalent NAND/Negative-OR logic diagram

Bubbles cancel

Bubbles cancel

A
G2B

G3
C

D

G1

G2 acts as AND

AB CD+

G3 acts as AND

G1 acts as OR

(a) Original NAND logic diagram showing effective

gate operation relative to the output expression

FIGURE 5–21 Development of the AND-OR equivalent of the circuit in Figure 5–20.

276 Combinational Logic Analysis

connected bubbles represent a double inversion and therefore cancel each other. This

inversion cancellation can be seen in the previous development of the output expres-

sion AB 1 CD and is indicated by the absence of barred terms in the output expres-

sion. Thus, the circuit in Figure 5–21(b) is effectively an AND-OR circuit, as shown in

Figure 5–21(c).

NAND Logic Diagrams Using Dual Symbols

All logic diagrams using NAND gates should be drawn with each gate represented by

either a NAND symbol or the equivalent negative-OR symbol to reflect the operation of the

gate within the logic circuit. The NAND symbol and the negative-OR symbol are called

dual symbols. When drawing a NAND logic diagram, always use the gate symbols in such

a way that every connection between a gate output and a gate input is either bubble-to-

bubble or nonbubble-to-nonbubble. In general, a bubble output should not be connected to

a nonbubble input or vice versa in a logic diagram.

Figure 5–22 shows an arrangement of gates to illustrate the procedure of using the

appropriate dual symbols for a NAND circuit with several gate levels. Although using all

NAND symbols as in Figure 5–22(a) is correct, the diagram in part (b) is much easier to

“read” and is the preferred method. As shown in Figure 5–22(b), the output gate is repre-

sented with a negative-OR symbol. Then the NAND symbol is used for the level of gates

right before the output gate and the symbols for successive levels of gates are alternated as

you move away from the output.

(a) Several Boolean steps are required to arrive at final output expression.

D

E

F

C

A

B

=

=

=

=

AB
ABC

ABCD

EF

(ABCD)EF

(ABCD) + EF

ABCD + EF

(AB + C)D + EF

(AB + C)D + EF

D

E

F

(AB + C)D + EF

(b) Output expression can be obtained directly from the function of each gate symbol in the diagram.

C

A

B

AND

AND

OR
AND

OR

(ABC)D

Bubble cancels bar

Bubble
cancels
bar

Bubble
cancels bar

Bubble adds
bar to C

EF

AB + C
AB

FIGURE 5–22 Illustration of the use of the appropriate dual symbols in a NAND logic

diagram.

The shape of the gate indicates the way its inputs will appear in the output expression

and thus shows how the gate functions within the logic circuit. For a NAND symbol, the

inputs appear ANDed in the output expression; and for a negative-OR symbol, the inputs

appear ORed in the output expression, as Figure 5–22(b) illustrates. The dual-symbol dia-

gram in part (b) makes it easier to determine the output expression directly from the logic

diagram because each gate symbol indicates the relationship of its input variables as they

appear in the output expression.

Combinational Logic Using NAND and NOR Gates 277

EXAMPLE 5–10

Implement each expression with NAND logic using appropriate dual symbols:

(a) ABC 1 DE (b) ABC + D + E

Solution

See Figure 5–25.

(b)

A
B
C

D
E

Bubble cancels bar

(a)

A
B
C

Bubbles add bars to D and E

D

E

ABC + DE

Bubble cancels bar

Bubble cancels bar

ABC

DE

ABC

ABC + D + E

FIGURE 5–25

Related Problem

Convert the NAND circuits in Figure 5–25(a) and (b) to equivalent AND-OR logic.

NOR Logic

A NOR gate can function as either a NOR or a negative-AND, as shown by DeMorgan’s theorem.

A + B = A B

NOR negative-AND

EXAMPLE 5–9

Redraw the logic diagram and develop the output expression for the circuit in Figure 5–23 using the appropriate dual symbols.

B

A

C

D

E

F

X

G2

G1

G4

G5

G3

FIGURE 5–23

Solution

Redraw the logic diagram in Figure 5–23 with the use of equivalent negative-OR symbols as shown in Figure 5–24. Writing

the expression for X directly from the indicated logic operation of each gate gives X = (A + B)C + (D + E)F.

B

A

C

D

E

F

A + B

D + E

(D + E)F

X = (A + B)C + (D + E)F

(A + B)CG
2

G
1

G
4

G
5

G
3

FIGURE 5–24

Related Problem

Derive the output expression from Figure 5–23 and show it is equivalent to the expression in the solution.

278 Combinational Logic Analysis

Consider the NOR logic in Figure 5–26. The output expression is developed as follows:

X = A + B + C + D = (A + B)(C + D) = (A + B)C + D)

As you can see in Figure 5–26, the output expression (A 1 B)(C 1 D) consists of two

OR terms ANDed together. This shows that gates G2 and G3 act as OR gates and gate G1

acts as an AND gate, as illustrated in Figure 5–27(a). This circuit is redrawn in part (b) with

a negative-AND symbol for gate G1.

A

B
G2

C

D

(a)

acts as OR

acts as AND

acts as OR

G2

G1

G3

(A + B)(C + D)

A

B

C

D

(A + B)(C + D)

(b)

G1

Bubbles cancel

Bubbles cancel

G3

G1

G2

G3

FIGURE 5–27

NOR Logic Diagram Using Dual Symbols

As with NAND logic, the purpose for using the dual symbols is to make the logic diagram

easier to read and analyze, as illustrated in the NOR logic circuit in Figure 5–28. When the

circuit in part (a) is redrawn with dual symbols in part (b), notice that all output-to-input

D

E

F

(b) Output expression can be obtained directly from the function of each gate symbol in the diagram.

(a) Final output expression is obtained after several Boolean steps.

C

A

B

OR

OR

AND
OR

AND

D

E

F

C

A

B

=
=
=
=

A + B + C
A + B + C + D

E + F

A + B + C + D + E + F

(A + B + C + D)(E + F)

(A + B + C + D)(E + F)

((A + B)C + D)(E + F)

((A + B)C + D)(E + F)

(A + B)C
(A + B)C + D

[(A + B)C + D](E + F)

E + F

A + B

A + B

Bubble adds bar to C

Bubble
cancels
bar

Bubble
cancels bar

Bubble cancels bar

FIGURE 5–28 Illustration of the use of the appropriate dual symbols in a NOR logic

diagram.

A

B
G2

C

D
G3

G1 X = (A + B)(C + D)

FIGURE 5–26 NOR logic for X 5 (A 1 B)(C 1 D).

Pulse Waveform Operation 279

connections between gates are bubble-to-bubble or nonbubble-to-nonbubble. Again, you

can see that the shape of each gate symbol indicates the type of term (AND or OR) that it

produces in the output expression, thus making the output expression easier to determine

and the logic diagram easier to analyze.

EXAMPLE 5–11

Using appropriate dual symbols, redraw the logic diagram and develop the output

expression for the circuit in Figure 5–29.

E

D

F

G5

X

B

A

C

G3

G4

G2

G1

FIGURE 5–29

Solution

Redraw the logic diagram with the equivalent negative-AND symbols as shown in Fig-

ure 5–30. Writing the expression for X directly from the indicated operation of each gate,

X = (A B + C)(D E + F)

B

A

C

D

E

F

AB

DE

DE + F

X = (AB + C)(DE + F) = (AB + C)(DE + F)

AB + C

G5

G3
G2

G1

G4

FIGURE 5–30

Related Problem

Prove that the output of the NOR circuit in Figure 5–29 is the same as for the circuit in

Figure 5–30.

SECTION 5–4 CHECKUP

 1. Implement the expression X = (A + B + C)DE by using NAND logic.

 2. Implement the expression X = A B C + (D + E) with NOR logic.

5–5 Pulse Waveform Operation

General combinational logic circuits with pulse waveform inputs are examined in this sec-

tion. Keep in mind that the operation of each gate is the same for pulse waveform inputs as

for constant-level inputs. The output of a logic circuit at any given time depends on the inputs

at that particular time, so the relationship of the time-varying inputs is of primary importance.

After completing this section, you should be able to

u Analyze combinational logic circuits with pulse waveform inputs

u Develop a timing diagram for any given combinational logic circuit with specified

inputs

280 Combinational Logic Analysis

The operation of any gate is the same regardless of whether its inputs are pulsed or

constant levels. The nature of the inputs (pulsed or constant levels) does not alter the truth

table of a circuit. The examples in this section illustrate the analysis of combinational logic

circuits with pulse waveform inputs.

The following is a review of the operation of individual gates for use in analyzing com-

binational circuits with pulse waveform inputs:

 1. The output of an AND gate is HIGH only when all inputs are HIGH at the same

time.

 2. The output of an OR gate is HIGH only when at least one of its inputs is HIGH.

 3. The output of a NAND gate is LOW only when all inputs are HIGH at the same

time.

 4. The output of a NOR gate is LOW only when at least one of its inputs is HIGH.

EXAMPLE 5–12

Determine the final output waveform X for the circuit in Figure 5–31, with input wave-

forms A, B, and C as shown.

B

A

C

X = A(B + C) = AB + AC

X
B

C

X

A

Y

Y

Inputs

FIGURE 5–31

Solution

The output expression, AB + AC, indicates that the output X is LOW when both A and

B are HIGH or when both A and C are HIGH or when all inputs are HIGH. The output

waveform X is shown in the timing diagram of Figure 5–31. The intermediate wave-

form Y at the output of the OR gate is also shown.

Related Problem

Determine the output waveform if input A is a constant HIGH level.

EXAMPLE 5–13

Draw the timing diagram for the circuit in Figure 5–32 showing the outputs of G1, G2,

and G3 with the input waveforms, A, and B, as indicated.

A

 X = AB + AB

B
G2

G3

G1

FIGURE 5–32

Pulse Waveform Operation 281

Solution

When both inputs are HIGH or when both inputs are LOW, the output X is HIGH as

shown in Figure 5–33. Notice that this is an exclusive-NOR circuit. The intermediate

outputs of gates G2 and G3 are also shown in Figure 5–33.

A

B

X

G
2

output

G
3

output

FIGURE 5–33

Related Problem

Determine the output X in Figure 5–32 if input B is inverted.

EXAMPLE 5–14

Determine the output waveform X for the logic circuit in Figure 5–34(a) by first finding

the intermediate waveform at each of points Y1, Y2, Y3, and Y4. The input waveforms are

shown in Figure 5–34(b).

A

B

Y2

Y1

Y4

Y3

C

D

X

(a)

A

B

C

D

Y
1

Y
2

Y
3

Y
4

X

(b)

(c)

FIGURE 5–34

282 Combinational Logic Analysis

Solution

All the intermediate waveforms and the final output waveform are shown in the timing

diagram of Figure 5–34(c).

Related Problem

Determine the waveforms Y1, Y2, Y3, Y4 and X if input waveform A is inverted.

EXAMPLE 5–15

Determine the output waveform X for the circuit in Example 5–14, Figure 5–34(a), directly from the output expression.

Solution

The output expression for the circuit is developed in Figure 5–35. The SOP form indicates that the output is HIGH when A

is LOW and C is HIGH or when B is LOW and C is HIGH or when C is LOW and D is HIGH.

A

B

C

D

X

A + B
(A + B)C

C

CD

= (A + B)C + CD = (A + B)C + CD = AC + BC + CD

FIGURE 5–35

The result is shown in Figure 5–36 and is the same as the one obtained by the intermediate-waveform method in Example

5–14. The corresponding product terms for each waveform condition that results in a HIGH output are indicated.

A

B

C

D

BC

AC AC

CD

X = AC + BC + CD

FIGURE 5–36

Related Problem

Repeat this example if all the input waveforms are inverted.

SECTION 5–5 CHECKUP

 1. One pulse with tW = 50 ms is applied to one of the inputs of an exclusive-OR cir-

cuit. A second positive pulse with tW = 10 ms is applied to the other input beginning

15 ms after the leading edge of the first pulse. Show the output in relation to the

inputs.

 2. The pulse waveforms A and B in Figure 5–31 are applied to the exclusive-NOR cir-

cuit in Figure 5–32. Develop a complete timing diagram.

Combinational Logic with VHDL 283

5–6 Combinational Logic with VHDL

The purpose of describing logic using VHDL is so that it can be programmed into a PLD.

The data flow approach to writing a VHDL program was described in Chapter 4. In this

section, both the data flow approach using Boolean expressions and the structural approach

are used to develop VHDL code for describing logic circuits. The VHDL component is

introduced and used to illustrate structural descriptions. Some aspects of software develop-

ment tools are discussed.

After completing this section, you should be able to

u Describe a VHDL component and discuss how it is used in a program

u Apply the structural approach and the data flow approach to writing VHDL code

u Describe two basic software development tools

Structural Approach to VHDL Programming

The structural approach to writing a VHDL description of a logic function can be com-

pared to installing IC devices on a circuit board and interconnecting them with wires. With

the structural approach, you describe logic functions and specify how they are connected

together. The VHDL component is a way to predefine a logic function for repeated use in

a program or in other programs. The component can be used to describe anything from a

simple logic gate to a complex logic function. The VHDL signal can be thought of as a way

to specify a “wire” connection between components.

Figure 5–37 provides a simplified comparison of the structural approach to a hardware

implementation on a circuit board.

Output defined

in port statement

Signals

VHDL
component

VHDL
component

VHDL
component

Inputs defined in port statementInterconnections

Inputs Output

(a) Hardware implementation with fixed-function logic (b) VHDL structural implementation

Logic
device

A

Logic
device

B

Logic
device

C

FIGURE 5–37 Simplified comparison of the VHDL structural approach to a hardware

implementation. The VHDL signals correspond to the interconnections on the circuit

board, and the VHDL components correspond to the 74 series IC devices.

VHDL Components

A VHDL component describes predefined logic that can be stored as a package declaration

in a VHDL library and called as many times as necessary in a program. You can use compo-

nents to avoid repeating the same code over and over within a program. For example, you

can create a VHDL component for an AND gate and then use it as many times as you wish

without having to write a program for an AND gate every time you need one.

VHDL components are stored and are available for use when you write a program. This

is similar to having, for example, a storage bin of ICs available when you are constructing

a circuit. Every time you need to use one in your circuit, you reach into the storage bin and

place it on the circuit board.

284 Combinational Logic Analysis

The VHDL program for any logic function can become a component and used whenever

necessary in a larger program with the use of a component declaration of the following

general form. Component is a VHDL keyword.

component name_of_component is

 port (port definitions);

end component name_of_component;

For simplicity, let’s assume that there are predefined VHDL descriptions of a 2-input AND

gate with the entity name AND_gate and a 2-input OR gate with the entity name OR_gate,

as shown in Figure 5–38.

X
A

B

entity AND_gate is

port (A, B: in bit; X: out bit);

end entity AND_gate;

architecture ANDfunction of AND_gate is

begin

 X <= A and B;

end architecture ANDfunction;

A

B
X

2-input AND gate

entity OR_gate is

port (A, B: in bit; X: out bit);

end entity OR_gate;

architecture ORfunction of OR_gate is

begin

 X <= A or B;

end architecture ORfunction;2-input OR gate

FIGURE 5–38 Predefined programs for a 2-input AND gate and a 2-input OR gate

to be used as components in the structural approach.

Using Components in a Program

Assume that you are writing a program for a logic circuit that has several AND gates.

Instead of rewriting the program in Figure 5–38 over and over, you can use a component

declaration to specify the AND gate. The port statement in the component declaration must

correspond to the port statement in the entity declaration of the AND gate.

component AND_gate is

 port (A, B: in bit; X: out bit);

end component AND_gate;

To use a component in a program, you must write a component instantiation statement for

each instance in which the component is used. You can think of a component instantiation

as a request or call for the component to be used in the main program. For example, the

simple SOP logic circuit in Figure 5–39 has two AND gates and one OR gate. Therefore,

the VHDL program for this circuit will have two components and three component

instantiations or calls.

OUT3

IN1
G1

IN2

IN3

IN4
G2

G3

OUT1

OUT2

FIGURE 5–39

Combinational Logic with VHDL 285

Signals

In VHDL, signals are analogous to wires that interconnect components on a circuit board.

The signals in Figure 5–39 are named OUT1 and OUT2. Signals are the internal connec-

tions in the logic circuit and are treated differently than the inputs and outputs. Whereas

the inputs and outputs are declared in the entity declaration using the port statement, the

signals are declared within the architecture using the signal statement. Signal is a VHDL

keyword.

The Program

The program for the logic in Figure 5–39 begins with an entity declaration as follows:

entity AND_OR_Logic is

 port (IN1, IN2, IN3, IN4: in bit; OUT3: out bit);

end entity AND_OR_Logic;

The architecture declaration contains the component declarations for the AND gate and

the OR gate, the signal definitions, and the component instantiations.

architecture LogicOperation of AND_OR_Logic is

component AND_gate is

 port (A, B: in bit; X: out bit);

end component AND_gate;

component OR_gate is

 port (A, B: in bit; X: out bit);

end component OR_gate;

signal OUT1, OUT2: bit;

begin

G1: AND_gate port map (A 5. IN1, B 5. IN2, X 5. OUT1);

G2: AND_gate port map (A 5. IN3, B 5. IN4, X 5. OUT2);

G3: OR_gate port map (A 5. OUT1, B 5. OUT2, X 5. OUT3);

end architecture LogicOperation;

Component Instantiations

Let’s look at the component instantiations. First, notice that the component instantia-

tions appear between the keyword begin and the end architecture statement. For

each instantiation an identifier is defined, such as G1, G2, and G3 in this case. Then

the component name is specified. The keyword port map essentially makes all the

connections for the logic function using the operator 5.. For example, the first

instantiation,

G1: AND_gate port map (A 5. IN1, B 5. IN2, X 5. OUT1);

can be explained as follows: Input A of AND gate G1 is connected to input IN1, input B of the

gate is connected to input IN2, and the output X of the gate is connected to the signal OUT1.

The three instantiation statements together completely describe the logic circuit in Fig-

ure 5–39, as illustrated in Figure 5–40.

Although the data flow approach using Boolean expressions would have been easier

and probably the best way to describe this particular circuit, we have used this simple

circuit to explain the concept of the structural approach. Example 5–16 compares the

structural and data flow approaches to writing a VHDL program for an SOP logic circuit.

Component declaration for the

AND gate

Component declaration for the

OR gate

Signal declaration

Component instantiations describe

how the three gates are connected.

286 Combinational Logic Analysis

OUT3

IN1

G1

IN2

G2

G3

OUT1

OUT2

A => IN1

A

B
X

B => IN2

A

B
X

A => IN3

B => IN4 X => OUT2

X => OUT1

OUT1

OUT2

A

B
X

A => OUT1

B => OUT2IN3

IN4

X => OUT3

FIGURE 5–40 Illustration of the instantiation statements and port mapping applied to the

AND-OR logic. Signals are shown in red.

EXAMPLE 5–16

Write a VHDL program for the SOP logic circuit in Figure 5–41 using the structural

approach and compare with the data flow approach. Assume that VHDL components

for a 3-input NAND gate and for a 2-input NAND are available. Notice the NAND gate

G4 is shown as a negative-OR.

OUT4

IN1
G1

IN3

OUT1
IN2

IN7
G3

IN8

IN4
G2

IN6
IN5

OUT2

OUT3

G4

FIGURE 5–41

Solution

The structural approach:

The components and component instantiations are highlighted. Lines preceded by two

hyphens are comment lines and are not part of the program.

--Program for the logic circuit in Figure 5–41

entity SOP_Logic is

 port (IN1, IN2, IN3, IN4, IN5, IN6, IN7, IN8: in bit; OUT4: out bit);

end entity SOP_Logic;

architecture LogicOperation of SOP_Logic is

--component declaration for 3-input NAND gate

component NAND_gate3 is

 port (A, B, C: in bit X: out bit);

end component NAND_gate3;

--component declaration for 2-input NAND gate

component NAND_gate2 is

 port (A, B: in bit; X: out bit);

end component NAND_gate2;

signal OUT1, OUT2, OUT3: bit;

Combinational Logic with VHDL 287

begin

G1: NAND_gate3 port map (A 5. IN1, B 5. IN2, C 5. IN3, X 5. OUT1);

G2: NAND_gate3 port map (A 5. IN4, B 5. IN5, C 5. IN6, X 5. OUT2);

G3: NAND_gate2 port map (A 5. IN7, B 5. IN8, X 5. OUT3);

G4: NAND_gate3 port map (A 5. OUT1, B 5. OUT2, C 5. OUT3, X 5. OUT4);

end architecture LogicOperation;

The data flow approach:

The program for the logic circuit in Figure 5–41 using the data flow approach is

written as follows:

entity SOP_Logic is

 port (IN1, IN2, IN3, IN4, IN5, IN6, IN7, IN8: in bit; OUT4: out bit);

end entity SOP_Logic;

architecture LogicOperation of SOP_Logic is

begin

 OUT4 ,5 (IN1 and IN2 and IN3) or (IN4 and IN5 and IN6) or (IN7 and IN8);

end architecture LogicOperation;

As you can see, the data flow approach results in a much simpler code for this particu-

lar logic function. However, in situations where a logic function consists of many blocks

of complex logic, the structural approach might have an advantage over the data flow

approach.

Related Problem

If another NAND gate is added to the circuit in Figure 5–41 with inputs IN9 and IN10,

write a component instantiation to add to the program.

Applying Software Development Tools

A software development package must be used to implement an HDL design in a target device.

Once the logic has been described using an HDL and entered via a software tool called a code

or text editor, it can be tested using a simulation to verify that it performs properly before actu-

ally programming the target device. Using software development tools allows for the design,

development, and testing of combinational logic before it is committed to hardware.

Typical software development tools allow you to input VHDL code on a text-based

editor specific to the particular development tool that you are using. The VHDL code for

a combinational logic circuit has been written using a text-based editor for illustration

and appears on the computer screen as shown in Figure 5–42. Many code editors provide

enhanced features such as the highlighting of keywords.

After the program has been written into the text editor, it is passed to the compiler. The com-

piler takes the high-level VHDL code and converts it into a file that can be downloaded to the

target device. Once the program has been compiled, you can create a simulation for testing. Sim-

ulated input values are inserted into the logic design and allow for verification of the output(s).

You specify the input waveforms on a software tool called a waveform editor, as shown in

Figure 5–43. The output waveforms are generated by a simulation of the VHDL code that you

entered on the text editor in Figure 5–42. The waveform simulation provides the resulting out-

puts X and Y for the inputs A, B, C, and D in all sixteen combinations from 0 0 0 02 to 1 1 1 12.

Recall from Chapter 3 that there are several performance characteristics of logic circuits

to be considered in the creation of any digital system. Propagation delay, for example,

determines the speed or frequency at which a logic circuit can operate. A timing simulation

can be used to mimic the propagation delay through the logic design in the target device.

288 Combinational Logic Analysis

Waveform Editor

Name:

D

50.0 ns 100.0 ns 150.0 ns 200.0 ns 250.0 ns 300.0 ns

C

B

A

Y

X

1

1

0

0

1

1

FIGURE 5–43 A typical waveform editor tool showing the simulated waveforms for the

logic circuit described by the VHDL code in Figure 5–42.

SECTION 5–6 CHECKUP

 1. What is a VHDL component?

 2. State the purpose of a component instantiation in a program architecture.

 3. How are interconnections made between components in VHDL?

 4. The use of components in a VHDL program represents what approach?

5–7 Troubleshooting

The preceding sections have given you some insight into the operation of combina-

tional logic circuits and the relationships of inputs and outputs. This type of under-

standing is essential when you troubleshoot digital circuits because you must know

what logic levels or waveforms to look for throughout the circuit for a given set of

input conditions.

In this section, an oscilloscope is used to troubleshoot a fixed-function logic circuit

when a device output is connected to several device inputs. Also, an example of signal

tracing and waveform analysis methods is presented using a scope or logic analyzer for

locating a fault in a combinational logic circuit.

Text Editor

entity Combinational is

 port (A, B, C, D: in bit; X, Y: out bit);

end entity Combinational;

architecture Example of Combinational is

begin

 X <= (A and B) or not C;

 Y <= C or not D;

end architecture Example;

File Edit View Project Assignments Processing Tools Window

FIGURE 5–42 A VHDL program for a combinational logic circuit after entry on a generic

text editor screen that is part of a software development tool.

Troubleshooting 289

After completing this section, you should be able to

u Define a circuit node

u Use an oscilloscope to find a faulty circuit node

u Use an oscilloscope to find an open input or output

u Use an oscilloscope to find a shorted input or output

u Discuss how to use an oscilloscope or a logic analyzer for signal tracing in a

combinational logic circuit

In a combinational logic circuit, the output of a driving device may be connected to two

or more load devices as shown in Figure 5–44. The interconnecting paths share a common

electrical point known as a node.

Driving

device

Load

device 1

Load

device 2

Load

device 3

Load

device n

Node

FIGURE 5–44 Illustration of a node in a logic circuit.

The driving device in Figure 5–44 is driving the node, and the other devices repre-

sent loads connected to the node. A driving device can drive a number of load device

inputs up to its specified fan-out. Several types of failures are possible in this situa-

tion. Some of these failure modes are difficult to isolate to a single bad device because

all the devices connected to the node are affected. Common types of failures are the

following:

 1. Open output in driving device. This failure will cause a loss of signal to all load

devices.

 2. Open input in a load device. This failure will not affect the operation of any of the

other devices connected to the node, but it will result in loss of signal output from the

faulty device.

 3. Shorted output in driving device. This failure can cause the node to be stuck in the

LOW state (short to ground) or in the HIGH state (short to VCC).

 4. Shorted input in a load device. This failure can also cause the node to be stuck in the

LOW state (short to ground) or in the HIGH state (short to VCC).

290 Combinational Logic Analysis

Troubleshooting Common Faults

Open Output in Driving Device

In this situation there is no pulse activity on the node. With circuit power on, an open node

will normally result in a “floating” level, as illustrated in Figure 5–45.

1 14

2 13

3 12

4 11

5 10

6 9

7 8

74HC00 pin diagram
from data sheet

Output pin of this
gate in IC1 is open

If there is no pulse activity at the output pin on IC1, there is an internal open. If
there is pulse activity directly on the output pin but not on the node interconnections,
the connection between the pin and the board is open.

IC1

7
4

H
C

0
0

IC2 IC3

7
4

H
C

0
0

7
4

H
C

0
0

There are pulses on
one input with the

other input HIGH.

No pulse activity is indicated
at any point on the node. Scope
may indicate "floating" level.

HIGH

FIGURE 5–45 Open output in driving device. Assume a HIGH is on one input.

When troubleshooting logic circuits, begin with a visual check, looking for obvious problems.
In addition to components, visual inspection should include connectors. Edge connectors are
frequently used to bring power, ground, and signals to a circuit board. The mating surfaces of
the connector need to be clean and have a good mechanical fit. A dirty connector can cause
intermittent or complete failure of the circuit. Edge connectors can be cleaned with a common
pencil eraser and wiped clean with a Q-tip soaked in alcohol. Also, all connectors should be
checked for loose-fitting pins.

Open Input in a Load Device

If the check for an open driver output in IC1 is negative (there is pulse activity), then a

check for an open input in a load device should be performed. Check the output of each

device for pulse activity, as illustrated in Figure 5–46. If one of the inputs that is nor-

mally connected to the node is open, no pulses will be detected on that device’s output.

Output or Input Shorted to Ground

When the output is shorted to ground in the driving device or the input to a load device

is shorted to ground, it will cause the node to be stuck LOW, as previously mentioned.

A quick check with a scope probe will indicate this, as shown in Figure 5–47. A short

to ground in the driving device’s output or in any load input will cause this symptom,

and further checks must therefore be made to isolate the short to a particular device.

Signal Tracing and Waveform Analysis

Although the methods of isolating an open or a short at a node point are useful from time

to time, a more general troubleshooting technique called signal tracing is of value in just

Troubleshooting 291

IC2 IC3
1 14

2 13

3 12

4 11

5 10

6 9

7 8

74HC00 pin diagram
from data sheet

IC1

7
4

H
C

0
0

7
4

H
C

0
0

7
4

H
C

0
0

HIGH

Pin 4 input of this
gate in IC2 is open

Check the output pin of each device connected to the node with other device inputs HIGH.
No pulse activity on an output indicates an open input or open output.

HIGH HIGH

FIGURE 5–46 Open input in a load device.

about every troubleshooting situation. Waveform measurement is accomplished with an

oscilloscope or a logic analyzer.

Basically, the signal tracing method requires that you observe the waveforms and their

time relationships at all accessible points in the logic circuit. You can begin at the inputs

and, from an analysis of the waveform timing diagram for each point, determine where an

incorrect waveform first occurs. With this procedure you can usually isolate the fault to a

specific device. A procedure beginning at the output and working back toward the inputs

can also be used.

The general procedure for signal tracing starting at the inputs is outlined as follows:

• Withinasystem,deinethesectionoflogicthatissuspectedofbeingfaulty.

• Startattheinputstothesectionoflogicunderexamination.Weassume,forthisdis-

cussion, that the input waveforms coming from other sections of the system have

been found to be correct.

IC1

7
4
H

C
0
0

IC2 IC3

7
4
H

C
0
0

7
4
H

C
0
0

1 14
2 13
3 12
4 11
5 10
6 9
7 8

HIGH

There is a LOW level at all
points connected to the node.

FIGURE 5–47 Shorted output in the driving device or shorted input in a load.

292 Combinational Logic Analysis

• Foreachdevice,beginningattheinputandworkingtowardtheoutputofthelogic
circuit, observe the output waveform of the device and compare it with the input

waveforms by using the oscilloscope or the logic analyzer.

• Determineiftheoutputwaveformiscorrect,usingyourknowledgeofthelogical
operation of the device.

• Iftheoutputisincorrect,thedeviceundertestmaybefaulty.PulltheICdevicethat
is suspected of being faulty, and test it out-of-circuit. If the device is found to be

faulty, replace the IC. If it works correctly, the fault is in the external circuitry or in

another IC to which the tested one is connected.

• Iftheoutputiscorrect,gotothenextdevice.Continuecheckingeachdeviceuntilan
incorrect waveform is observed.

Figure 5–48 is an example that illustrates the general procedure for a specific logic

circuit in the following steps:

Step 1: Observe the output of gate G1 (test point 5) relative to the inputs. If it is

correct, check the inverter next. If the output is not correct, the gate or its

TP1

TP2

TP5

TP3

TP6

TP5

TP3

TP7

Step 1

If correct, go to step 2.

If incorrect, test IC2 and connections.

Step 2

If correct, go to step 3.

If incorrect, test IC1 and connections.

Step 3

If correct, go to step 4.

If incorrect, test IC2 and connections.

TP1

TP2

Scope is externally triggered from test point 1 (TP1).

12

13
11 TP5 10

TP3

TP4

9
8

12 2

1

13

TP6

TP7

5

4
6

TP8

TP9

3

TP6 TP7

TP8

TP9

TP8

TP4

Step 4

If correct, go to step 5.

If incorrect, test IC2 and connections.

Step 5

If correct, circuit is OK.

If incorrect, test IC2 and connections.

TP3 TP4 TP6

TP8

TP9

TP5

TP1

TP2

G1
G2

G3

G4

7
4

H
C

0
0

IC2IC1

7
4

H
C

0
4

TP7

FIGURE 5–48 Example of signal tracing and waveform analysis in a portion of a printed

circuit board. TP indicates test point.

Troubleshooting 293

connections are bad; or, if the output is LOW, the input to gate G2 may be

shorted.

Step 2: Observe the output of the inverter (TP6) relative to the input. If it is correct,

check gate G2 next. If the output is not correct, the inverter or its connections

are bad; or, if the output is LOW, the input to gate G3 may be shorted.

Step 3: Observe the output of gate G2 (TP7) relative to the inputs. If it is correct, check

gate G3 next. If the output is not correct, the gate or its connections are bad; or,

if the output is LOW, the input to gate G4 may be shorted.

Step 4: Observe the output of gate G3 (TP8) relative to the inputs. If it is correct, check

gate G4 next. If the output is not correct, the gate or its connections are bad; or,

if the output is LOW, the input to gate G4 (TP7) may be shorted.

Step 5: Observe the output of gate G4 (TP9) relative to the inputs. If it is correct, the

circuit is okay. If the output is not correct, the gate or its connections are bad.

EXAMPLE 5–17

Determine the fault in the logic circuit of Figure 5–49(a) by using waveform analysis. You have observed the waveforms

shown in green in Figure 5–49(b). The red waveforms are correct and are provided for comparison.

A

B

C

D

(a)

G2

G3

A

B

C

D

G
1

output

G
2

output

G
3

output

(b)

G
4

output

Inverter
output

G4

G1

FIGURE 5–49

Solution

 1. Determine what the correct waveform should be for each gate. The correct waveforms are shown in red, superim-

posed on the actual measured waveforms, in Figure 5–49(b).

 2. Compare waveforms gate by gate until you find a measured waveform that does not match the correct waveform.

In this example, everything tested is correct until gate G3 is checked. The output of this gate is not correct as the differences in

the waveforms indicate. An analysis of the waveforms indicates that if the D input to gate G3 is open and acting as a HIGH, you will

get the output waveform measured (shown in red). Notice that the output of G4 is also incorrect due to the incorrect input from G3.

Replace the IC containing G3, and check the circuit’s operation again.

Related Problem

For the inputs in Figure 5–49(b), determine the output waveform for the logic circuit (output of G4) if the inverter has an

open output.

294 Combinational Logic Analysis

As you know, testing and troubleshooting logic circuits often require observing and comparing two
digital waveforms simultaneously, such as an input and the output of a device, on an oscilloscope.
For digital waveforms, the scope should always be set to DC coupling on each channel input to
avoid “shifting” the ground level. You should determine where the 0 V level is on the screen for
both channels.

To compare the timing of the waveforms, the scope should be triggered from only one channel
(don’t use vertical mode or composite triggering). The channel selected for triggering should always
be the one that has the lowest frequency waveform, if possible.

SECTION 5–7 CHECKUP

 1. List four common internal failures in logic gates.

 2. One input of a NOR gate is externally shorted to +VCC. How does this condition af-

fect the gate operation?

 3. Determine the output of gate G4 in Figure 5–49(a), with inputs as shown in part (b),

for the following faults:

(a) one input to G1 shorted to ground

(b) the inverter input shorted to ground

(c) an open output in G3

Applied Logic

Tank Control

A storage tank system for a pancake syrup manufacturing company is shown in Figure 5–50.

The control logic allows a volume of corn syrup to be preheated to a specified temperature

to achieve the proper viscosity prior to being sent to a mixing vat where ingredients such as

sugar, flavoring, preservative, and coloring are added. Level and temperature sensors in the

tank and the flow sensor provide the inputs for the logic.

System Operation and Analysis

The tank holds corn syrup for use in a pancake syrup manufacturing process. In prepa-

ration for mixing, the temperature of the corn syrup when released from the tank into a

mixing vat must be at a specified value for proper viscosity to produce required flow char-

acteristics. This temperature can be selected via a keypad input. The control logic main-

tains the temperature at this value by turning a heater on and off. The analog output from

the temperature transducer (Tanalog) is converted to an 8-bit binary code by an analog-to-

digital converter and then to an 8-bit BCD code. A temperature controller detects when the

temperature falls below the specified value and turns the heater on. When the temperature

reaches the specified value, the heater is turned off.

The level sensors produce a HIGH when the corn syrup is at or above the minimum or at the

maximum level. The valve control logic detects when the maximum level (Lmax) or minimum

level (Lmin) has been reached and when mixture is flowing into the tank (Finlet). Based on these

inputs, the control logic opens or closes each valve (Vinlet and Voutlet). New corn syrup can be

Applied Logic 295

added to the tank via the inlet valve only when the minimum level is reached. Once the inlet

valve is opened, the level in the tank must reach the maximum point before the inlet valve is

closed. Also, once the outlet valve is opened, the level must reach the minimum point before

the outlet valve is closed. New syrup is always cooler than the syrup in the tank. Syrup cannot

be released from the tank while it is being filled or its temperature is below the specified value.

Inlet Valve Control The conditions for which the inlet valve is open, allowing the tank

to fill, are

u The solution level is at minimum (Lmin).
u The tank is filling (Finlet) but the maximum level has not been reached (Lmax).

Table 5–6 is the truth table for the inlet valve. A HIGH (1) is the active level for the

inlet valve to be open (on).

Monitoring

and control

logic

Finlet
Vinlet

Voutlet

T
Lmax

Lmin

Tanalog

Outlet

valve
To mixing vat

Temperature

transducer

Level

sensors

Heater

Flow sensor

Inlet valve

FIGURE 5–50 Tank with level and temperature sensors and controls.

TABLE 5–6

Truth table for inlet valve control.

Inputs Output

DescriptionLmax Lmin Finlet Vinlet

0 0 0 1 Level below minimum. No inlet flow.

0 0 1 1 Level below minimum. Inlet flow.

0 1 0 0 Level above min and below max. No inlet flow.

0 1 1 1 Level above min and below max. Inlet flow.

1 0 0 X Invalid

1 0 1 X Invalid

1 1 0 0 Level at maximum. No inlet flow.

1 1 1 0 Level at maximum. Inlet flow.

Exercise

1. Explain why the two conditions indicated in the truth table are invalid.

2. Under how many input conditions is the inlet valve open?

3. Once the level drops below minimum and the tank starts refilling, when does the

inlet valve turn off?

296 Combinational Logic Analysis

From the truth table, an expression for the inlet valve control output can be written.

Vinlet = LmaxLminFinlet + LmaxLminFinlet + LmaxLminFinlet

The SOP expression for the inlet valve logic can be reduced to the following simplified

expression using Boolean methods:

Vinlet = Lmin + LmaxFinlet

Exercise

4. Using a K-map, prove that the simplified expression is correct.

5. Using the simplified expression, draw the logic diagram for the inlet valve control.

Outlet Valve Control The conditions for which the outlet valve is open allowing the tank

to drain are

u The syrup level is above minimum and the tank is not filling.
u The temperature of the syrup is at the specified value.

Table 5–7 is the truth table for the outlet valve. A HIGH (1) is the active level for the

outlet valve to be open (on). (Note: T is both an input and an output, T 5 Temp).

TABLE 5–7

Truth table for outlet valve control.

Inputs Output

DescriptionLmax Lmin Finlet T Voutlet

0 0 0 0 0 Level below minimum. No inlet flow. Temp low.

0 0 0 1 0 Level below minimum. No inlet flow. Temp correct.

0 0 1 0 0 Level below minimum. Inlet flow. Temp low.

0 0 1 1 0 Level below minimum. Inlet flow. Temp correct.

0 1 0 0 0 Level above min and below max. No inlet flow. Temp low.

0 1 0 1 1 Level above min and below max. No inlet flow. Temp

correct.

0 1 1 0 0 Level above min and below max. Inlet flow. Temp low.

0 1 1 1 0 Level above min and below max. Inlet flow. Temp

correct

1 0 0 0 X Invalid

1 0 0 1 X Invalid

1 0 1 0 X Invalid

1 0 1 1 X Invalid

1 1 0 0 0 Level at maximum. No inlet flow. Temp low.

1 1 0 1 1 Level at maximum. No inlet flow. Temp correct.

1 1 1 0 0 Level at maximum. Inlet flow. Temp low.

1 1 1 1 0 Level at maximum. Inlet flow. Temp correct.

Exercise

6. Why does the outlet valve control require four inputs and the inlet valve only three?

7. Under how many input conditions is the outlet valve open?

8. Once the level reaches maximum and the tank starts draining, when does the outlet

valve turn off?

From the truth table, an expression for the outlet valve control can be written.

Voutlet = LmaxLminFinlet T + LmaxLminFinletT

Applied Logic 297

The SOP expression for the outlet valve logic can be reduced to the following simplified

expression:

Voutlet = LminFinletT

Exercise

 9. Using a K-map, prove that the simplified expression is correct.

10. Using the simplified expression, draw the logic diagram for the outlet valve control.

Temperature Control The temperature control logic accepts an 8-bit BCD code repre-

senting the measured temperature and compares it to the BCD code for the specified tem-

perature. A block diagram is shown in Figure 5–51.

Analog-to-

digital

converter

Binary-to-

BCD

converter

Temperature-

control logic
Tanalog T

8-bit

binary code

8-bit BCD for

measured temperature

8-bit BCD for

specified temperature

FIGURE 5–51 Block diagram for temperature control circuit.

When the measured temperature and the specified temperature are the same, the two

BCD codes are equal and the T output is LOW (0). When the measured temperature falls

below the specified value, there is a difference in the BCD codes and the T output is HIGH

(1), which turns on the heater. The temperature control logic can be implemented with

exclusive-OR gates, as shown in Figure 5–52. Each pair of corresponding bits from the two

T

BCD for specified

temperature (TS)

BCD for

measured

temperature

(TM)

TM1

TS1TS2TS3TS4TS5TS6TS7TS8

TM2

TM3

TM4

TM5

TM6

TM7

TM8

FIGURE 5–52 Logic diagram of the temperature control logic.

298 Combinational Logic Analysis

BCD codes is applied to an exclusive-OR gate. If the bits are the same, the output of the

XOR gate is 0; and if they are different, the output of the XOR gate is 1. When one or more

XOR outputs equal 1, the T output of the OR gate equals 1, causing the heater to turn on.

VHDL Code for Tank Control Logic

The control logic for the inlet valve, outlet valve, and temperature is described with VHDL

using the data flow approach (which is based on the Boolean description of the logic).

Exercise 11 requires the structural approach (which is based on the gates and how they are

connected) for comparison.

entity TankControl is

 port (Finlet, Lmax, Lmin, TS1, TS2, TS3, TS4, TS5, TS6, TS7, TS8, TM1, TM2,

 TM3, TM4, TM5, TM6, TM7, TM8: in bit; Vinlet, Voutlet, T: out bit);

end entity TankControl;

architecture ValveTempLogic of Tank Control is

begin

 Vinlet ,5 not Lmin or (not Lmax and Finlet);

 Voutlet ,5 Lmin and not Finlet and T;

 T ,5 (TS1 xor TM1) or (TS2 xor TM2) or (TS3 xor TM3) or (TS4 xor TM4)

 or (TS5 xor TM5) or (TS6 xor TM6) or (TS7 xor TM7) or (TS8 xor TM8);

end architecture ValveTempLogic;

Exercise

11. Write the VHDL code for the tank control logic using the structural approach.

Simulation of the Valve Control Logic

The inlet and outlet valve control logic simulation screen is shown in Figure 5–53. SPDT

switches are used to represent the level and flow sensor inputs and the temperature indica-

tion. Probes are used to indicate the output states.

FIGURE 5–53 Multisim circuit screen for the valve control logic.

Key Terms 299

Open file AL05 in the Applied Logic folder on the website. Run the simulation of the

valve-control logic using your Multisim software and observe the operation. Create

a new Multisim file, connect the temperature control logic, and run the simulation.

Putting Your Knowledge to Work

If the temperature of the syrup can never be more than 9°C below the specified value, can

the temperature control circuit be simplified? If so, how?

SUMMARY

• AND-ORlogicproducesanoutputexpressioninSOPform.

• AND-OR-InvertlogicproducesacomplementedSOPform,whichisactuallyaPOSform.

• Theoperationalsymbolforexclusive-ORis � . An exclusive-OR expression can be stated in

two equivalent ways:

AB + AB = A � B

• Todoananalysisofalogiccircuit,startwiththelogiccircuit,anddeveloptheBooleanoutput
expression or the truth table or both.

• ImplementationofalogiccircuitistheprocessinwhichyoustartwiththeBooleanoutput
expressions or the truth table and develop a logic circuit that produces the output function.

• AllNANDorNORlogicdiagramsshouldbedrawnusingappropriatedualsymbolsso
that bubble outputs are connected to bubble inputs and nonbubble outputs are connected to

 nonbubble inputs.

• Whentwonegationindicators(bubbles)areconnected,theyeffectivelycanceleachother.

• AVHDLcomponentisapredefinedlogicfunctionstoredforusethroughoutaprogramorin
other programs.

• Acomponentinstantiationisusedtocallforacomponentinaprogram.

• AVHDLsignaleffectivelyactsasaninternalinterconnectioninaVHDLstructuraldescription.

KEY TERMS

Key terms and other bold terms in the chapter are defined in the end-of-book glossary.

Component A VHDL feature that can be used to predefine a logic function for multiple use

throughout a program or programs.

Negative-AND The dual operation of a NOR gate when the inputs are active-LOW.

Negative-OR The dual operation of a NAND gate when the inputs are active-LOW.

Node A common connection point in a circuit in which a gate output is connected to one or more

gate inputs.

Signal A waveform; a type of VHDL object that holds data.

Signal tracing A troubleshooting technique in which waveforms are observed in a step-by-step

manner beginning at the input and working toward the output or vice versa. At each point the

 observed waveform is compared with the correct signal for that point.

Universal gate Either a NAND gate or a NOR gate. The term universal refers to the property of

a gate that permits any logic function to be implemented by that gate or by a combination of that

kind.

300 Combinational Logic Analysis

TRUE/FALSE QUIZ

Answers are at the end of the chapter.

 1. AND-OR logic can have only two 2-input AND gates.

 2. AOI is an acronym for AND-OR-Invert.

 3. If the inputs of an exclusive-OR gate are the same, the output is LOW (0).

 4. If the inputs of an exclusive-NOR gate are different, the output is HIGH (1).

 5. A parity generator cannot be implemented using exclusive-OR gates.

 6. NAND gates can be used to produce the AND functions.

 7. NOR gates cannot be used to produce the OR functions.

 8. Any SOP expression can be implemented using only NAND gates.

 9. The dual symbol for a NAND gate is a negative-AND symbol.

 10. Negative-OR is equivalent to NAND.

SELF-TEST

Answers are at the end of the chapter.

 1. The output expression for an AND-OR circuit having one AND gate with inputs A, B and C

and one AND gate with inputs D, E and F is

(a) ABCDEF (b) A + B + C + D + E + F

(c) ABC + DEF (d) (A + B + C)(D + E + F)

 2. A logic circuit with an output X = AB + ABC consists of

(a) two AND gates and one OR gate

(b) two AND gates, one OR gate and an inverter

(c) two AND gates, two OR gates and two inverters

(d) two AND gates, one OR gate and three inverters

 3. To implement the expression X Y Z + X Y Z + X Y Z + X YZ + X Y Z, it takes

(a) five AND gates, one OR gate, and eight inverters

(b) four AND gates, two OR gates, and six inverters

(c) five AND gates, three OR gates, and seven inverters

(d) five AND gates, one OR gate, and seven inverters

 4. The expression ABCD + ABCD + AB CD

(a) cannot be simplified (b) can be simplified to ABC + AB

(c) can be simplified to ABCD + ABC (d) None of these answers is correct.

 5. The output expression for an AND-OR-Invert circuit having one AND gate with inputs A, B, C

and another AND gate with inputs D, E, F is

(a) ABC 1 DEF (b) (A + B + C)(D + E + F)

(c) (A + B + C)(D + E + F) (d) A + B + C + D + E + F

 6. An exclusive-NOR function is expressed as

(a) A B + AB (b) AB + AB

(c) (A + B)(A + B) (d) (A + B)(A + B)

 7. The AND operation can be produced with

(a) two NAND gates (b) three NAND gates

(c) one NOR gate (d) three NOR gates

 8. The OR operation can be produced with

(a) two NOR gates (b) three NAND gates

(c) four NAND gates (d) both answers (a) and (b)

 9. When using dual symbols in a logic diagram,

(a) bubble outputs are connected to bubble inputs

(b) the NAND symbols produce the AND operations

(c) the negative-OR symbols produce the OR operations

(d) All of these answers are true.

(e) None of these answers is true.

Problems 301

 10. All Boolean expressions can be implemented with

(a) NAND gates only

(b) NOR gates only

(c) combinations of NAND and NOR gates

(d) combinations of AND gates, OR gates, and inverters

(e) any of these

 11. A VHDL component

(a) can be used once in each program

(b) is a predefined description of a logic function

(c) can be used multiple times in a program

(d) is part of a data flow description

(e) answers (b) and (c)

 12. A VHDL component is called for use in a program by using a

(a) signal (b) variable

(c) component instantiation (d) architecture declaration

PROBLEMS

Answers to odd-numbered problems are at the end of the book.

Section 5–1 Basic Combinational Logic Circuits

 1. Draw the ANSI distinctive shape logic diagram for a 4-wide, 3-input AND-OR-Invert circuit.

Also draw the ANSI standard rectangular outline symbol.

 2. Write the output expression for each circuit in Figure 5–54.

(a)

X

(b)

A

B

C

X

A

B

C

D

FIGURE 5–54

A

X
B

(b)

A

X
B

(a)

A

X

B

(d)

A
X

B

(c)

A

X

B

(e)

C

A

B

C

(f)

X

FIGURE 5–55

 3. Write the output expression for each circuit as it appears in Figure 5–55.

302 Combinational Logic Analysis

 4. Write the output expression for each circuit as it appears in Figure 5–56 and then change each

circuit to an equivalent AND-OR configuration.

 5. Develop the truth table for each circuit in Figure 5–55.

 6. Develop the truth table for each circuit in Figure 5–56.

 7. Show that an exclusive-NOR circuit produces a POS output.

(a) (b)

(d)(c)

(e)

(f)

C

A

B

D

X

A

B

C

E

D

X X

A

B

D

C

X

A

B

C

D

D

C

X

A

B

E

F

H

G

X

A

B

C

E

D

FIGURE 5–56

Section 5–2 Implementing Combinational Logic

 8. Develop an AND-OR-Invert logic circuit for a power drive which switches on (logic 1) when

the guard is in place (logic 1) and switches off (logic 0) when the motor is too hot (logic 0).

 9. An AOI (AND-OR-Invert) logic chip has two 4-input AND gates connected to a 2-input NOR

gate. Write the Boolean expression for the circuit (assume the inputs are labeled A through H).

 10. Use AND gates, OR gates, or combinations of both to implement the following logic

 expressions as stated:

(a) X = A + B + C

(b) X = ABC

(c) X = A + BC

(d) X = AB + CD

(e) X = (A + B)(C + D)

(f) X = A + BCD

(g) X = ABC + BCD + DEF

(h) X = ABC(D + E + F) + AC(C + D + E)

Problems 303

 11. Use AND gates, OR gates, and inverters as needed to implement the following logic expres-

sions as stated:

(a) X = AB + BC

(b) X = A(B + C)

(c) X = AB + AB

(d) X = ABC + B(EF + G)

(e) X = A[BC(A + B + C + D)]

(f) X = B(CDE + EFG)(AB + C)

 12. Use NAND gates, NOR gates, or combinations of both to implement the following logic

expressions as stated:

(a) X = AB + CD + (A + B)(ACD + BE)

(b) X = ABC D + DEF + AF

(c) X = A[B + C(D + E)]

 13. Implement a logic circuit for the truth table in Table 5–8.

TABLE 5–8

Inputs Output

A B C X

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

 14. Implement a logic circuit for the truth table in Table 5–9.

TABLE 5–9

Inputs Output

A B C D X

0 0 0 0 0

0 0 0 1 0

0 0 1 0 1

0 0 1 1 1

0 1 0 0 1

0 1 0 1 0

0 1 1 0 0

0 1 1 1 0

1 0 0 0 1

1 0 0 1 1

1 0 1 0 1

1 0 1 1 1

1 1 0 0 0

1 1 0 1 0

1 1 1 0 0

1 1 1 1 1

304 Combinational Logic Analysis

 15. Simplify the circuit in Figure 5–57 as much as possible, and verify that the simplified circuit is

equivalent to the original by showing that the truth tables are identical.

 16. Repeat Problem 15 for the circuit in Figure 5–58.

A

X

C

B

FIGURE 5–57

A

X

B

C

FIGURE 5–58

 17. Minimize the gates required to implement the functions in each part of Problem 11 in SOP form.

 18. Minimize the gates required to implement the functions in each part of Problem 12 in SOP

form.

 19. Minimize the gates required to implement the function of the circuit in each part of Figure

5–56 in SOP form.

Section 5–3 The Universal Property of NAND and NOR Gates

 20. Implement the logic circuits in Figure 5–54 using only NAND gates.

 21. Implement the logic circuit in Figure 5–58 using only NAND gates.

 22. Repeat Problem 20 using only NOR gates.

 23. Repeat Problem 21 using only NOR gates.

Section 5–4 Combinational Logic Using NAND and NOR Gates

 24. Show how the following expressions can be implemented as stated using only NOR gates:

(a) X = ABC (b) X = ABC (c) X = A + B

(d) X = A + B + C (e) X = AB + CD (f) X = (A + B)(C + D)

(g) X = AB[C(DE + AB) + BCE]

 25. Repeat Problem 24 using only NAND gates.

 26. Implement each function in Problem 10 by using only NAND gates.

 27. Implement each function in Problem 11 by using only NAND gates.

Section 5–5 Pulse Waveform Operation

 28. The output of the logic circuit and input waveforms in Figure 5–59 is passed through an

inverter. Draw the output waveform.

B X

A
A

B

FIGURE 5–59

 29. For the logic circuit in Figure 5–60, draw the output waveform in proper relationship to the

inputs.

A

B

A

B X

FIGURE 5–60

Problems 305

 30. For the input waveforms in Figure 5–61, what logic circuit will generate the output waveform

shown?

A

B

C

X

Inputs

Output

FIGURE 5–61

A

B

C

D

E

F

X

A

B

C
D

F
E

1

2

3

4
5

FIGURE 5–63

A

B

C

D

E

X

100 ns pulse width

25 ns minimum

X

A

B

C

D

E

G1

G2

G3

G4

FIGURE 5–64

 31. Repeat Problem 30 for the waveforms in Figure 5–62.

 32. For the circuit in Figure 5–63, draw the waveforms at the numbered points in the proper rela-

tionship to each other.

A

B

C

X

Inputs

Output

FIGURE 5–62

 33. Assuming a propagation delay through each gate of 10 nanoseconds (ns), determine if the

desired output waveform X in Figure 5–64 (a pulse with a minimum tW 5 25 ns positioned as

shown) will be generated properly with the given inputs.

Section 5–6 Combinational Logic with VHDL

 34. Describe a 2-input NAND gate with VHDL.

 35. Describe a 3-input AND gate with VHDL.

 36. Write a VHDL program using the data flow approach (Boolean expressions) to describe the

logic circuit in Figure 5–54(b).

 37. Write VHDL programs using the data flow approach (Boolean expressions) for the logic

 circuits in Figure 5–55(e) and (f).

306 Combinational Logic Analysis

 38. Write a VHDL program using the structural approach for the logic circuit in Figure 5–56(d).

Assume component declarations for each type of gate are already available.

 39. Repeat Problem 38 for the logic circuit in Figure 5–56(f).

 40. Describe the logic represented by the truth table in Table 5–8 using VHDL by first converting it

to SOP form.

 41. Develop a VHDL program for the logic in Figure 5–65, using both the data flow and the struc-

tural approach. Compare the resulting programs.

A

B

C

D

E

G2

G1

G4

G3

X

FIGURE 5–65

G4

X

A
B

C

D

E

G2

G1

G3

G5

FIGURE 5–66

 42. Develop a VHDL program for the logic in Figure 5–66, using both the data flow and the struc-

tural approach. Compare the resulting programs.

 43. Given the following VHDL program, create the truth table that describes the logic circuit.

entity CombLogic is

 port (A, B, C, D: in bit; X: out bit);

end entity CombLogic;

architecture Example of CombLogic is

 begin

 X ,5 not((not A and not B) or (not A and not C) or (not A and not D) or

 (not B and not C) or (not B and not D) or (not D and not C));

end architecture Example;

 44. Describe the logic circuit shown in Figure 5–67 with a VHDL program, using the data flow

approach.

 45. Repeat Problem 44 using the structural approach.

X

A1

A2

B1

B2

G1

G2

G3

G4

G5
G6

G7

FIGURE 5–67

Problems 307

Section 5–7 Troubleshooting

 46. For the logic circuit and the input waveforms in Figure 5–68, the indicated output waveform is

observed. Determine if this is the correct output waveform.

A

B

C

D

A

B

C

D

X

FIGURE 5–68

A

B

C

D

E

X

A

B

C

D

E

G2

G1

G4

G3

FIGURE 5–69

A

B

F

E

C

D

G
1

G
2

G
3

G
4 X

F

X

E

D

C

B

A

FIGURE 5–70

 47. The output waveform in Figure 5–69 is incorrect for the inputs that are applied to the circuit.

Assuming that one gate in the circuit has failed, with its output either an apparent constant HIGH

or a constant LOW, determine the faulty gate and the type of failure (output open or shorted).

 48. Repeat Problem 47 for the circuit in Figure 5–70, with input and output waveforms as shown.

 49. By examining the connections in Figure 5–71, determine the driving gate and load gate(s).

Specify by device and pin numbers.

74HC0074HC001 2

FIGURE 5–71

308 Combinational Logic Analysis

 50. Figure 5–72(a) is a logic circuit under test. Figure 5–72(b) shows the waveforms as observed

on a logic analyzer. The output waveform is incorrect for the inputs that are applied to the cir-

cuit. Assuming that one gate in the circuit has failed, with its output either an apparent constant

HIGH or a constant LOW, determine the faulty gate and the type of failure.

A

B

X

(b)

C

D

E

F

X

A

B

C

D

E

F

G1

G2

G3

G4

(a)

FIGURE 5–72

A

B

C

D

E

G4

X

A
B

C

D

E

G2

G1

G3

G5

FIGURE 5–73

A

B

X

C

D

E

F

TP

TP

A

B

C

D

E

F

FIGURE 5–74

 51. The logic circuit in Figure 5–73 has the input waveforms shown.

(a) Determine the correct output waveform in relation to the inputs.

(b) Determine the output waveform if the output of gate G3 is open.

(c) Determine the output waveform if the upper input to gate G5 is shorted to ground.

 52. The logic circuit in Figure 5–74 has only one intermediate test point available besides the output,

as indicated. For the inputs shown, you observe the indicated waveform at the test point. Is this

waveform correct? If not, what are the possible faults that would cause it to appear as it does?

Applied Logic

 53. Describe the function of each of the three sensors in the tank.

 54. Implement the inlet valve logic using NOR gates and inverters.

 55. Repeat Problem 54 for the outlet valve logic.

 56. Implement the temperature control logic using XNOR gates.

 57. Design a circuit to enable an additive to be introduced into the syrup through another inlet only

when the temperature is at the specified value and the syrup level is at the low-level sensor.

Answers 309

Special Design Problems

 58. (a) Design a logic circuit to produce a HIGH output only if the input, represented by a 4-bit

binary number, is greater than twelve or less than three. First develop the truth table and

then draw the logic diagram.

(b) Describe the logic using VHDL.

 59. (a) Develop the logic circuit necessary to meet the following requirements:

A battery-powered lamp in a room is to be operated from two switches, one at the back

door and one at the front door. The lamp is to be on if the front switch is on and the back

switch is off, or if the front switch is off and the back switch is on. The lamp is to be off if

both switches are off or if both switches are on. Let a HIGH output represent the on condi-

tion and a LOW output represent the off condition.

(b) Describe the logic using VHDL.

 60. (a) Develop the NAND logic for a hexadecimal keypad encoder that will convert each key

closure to binary.

(b) Describe the logic using VHDL.

Multisim Troubleshooting Practice

 61. Open file P05-61. For the specified fault, predict the effect on the circuit. Then introduce the

fault and verify whether your prediction is correct.

 62. Open file P05-62. For the specified fault, predict the effect on the circuit. Then introduce the

fault and verify whether your prediction is correct.

 63. Open file P05-63. For the observed behavior indicated, predict the fault in the circuit. Then

introduce the suspected fault and verify whether your prediction is correct.

 64. Open file P05-64. For the observed behavior indicated, predict the fault in the circuit. Then

introduce the suspected fault and verify whether your prediction is correct.

ANSWERS

SECTION CHECKUPS

Section 5–1 Basic Combinational Logic Circuits

 1. (a) AB + CD = 1 # 0 + 1 # 0 = 1 (b) AB + CD = 1 # 1 + 0 # 1 = 0

(c) AB + CD = 0 # 1 + 1 # 1 = 0

 2. (a) AB + AB = 1 # 0 + 1 # 0 = 1 (b) AB + AB = 1 # 1 + 1 # 1 = 0

(c) AB + AB = 0 # 1 + 0 # 1 = 1 (d) AB + AB = 0 # 0 + 0 # 0 = 0

 3. X = 1 when ABC = 000, 011, 101, 110, and 111; X = 0 when ABC = 001, 010, and 100

 4. X = AB + A B; the circuit consists of two AND gates, one OR gate, and two inverters. See

Figure 5–6(b) for diagram.

Section 5–2 Implementing Combinational Logic

 1. (a) X = ABC + AB + AC: three AND gates, one OR gate

(b) X = AB(C + DE): three AND gates, one OR gate

 2. X = ABC + A B C; two AND gates, one OR gate, and three inverters

 3. (a) X = AB(C + 1) + AC = AB + AC

(b) X = AB(C + DE) = ABC + ABDE

Section 5–3 The Universal Property of NAND and NOR Gates

 1. (a) X = A + B: a 2-input NAND gate with A and B on its inputs.

(b) X = AB: a 2-input NAND with A and B on its inputs, followed by one NAND used as an

inverter.

 2. (a) X = A + B: a 2-input NOR with inputs A and B, followed by one NOR used as an

inverter.

(b) X = AB: a 2-input NOR with A and B on its inputs.

310 Combinational Logic Analysis

Section 5–4 Combinational Logic Using NAND and NOR Gates

 1. X = (A + B + C)DE: a 3-input NAND with inputs, A, B, and C, with its output connected to

a second 3-input NAND with two other inputs, D and E

 2. X = A B C + (D + E): a 3-input NOR with inputs A, B, and C, with its output connected to a

second 3-input NOR with two other inputs, D and E

Section 5–5 Pulse Waveform Operation

 1. The exclusive-OR output is a 15 ms pulse followed by a 25 ms pulse, with a separation of 10 ms

between the pulses.

 2. The output of the exclusive-NOR is HIGH when both inputs are HIGH or when both inputs are

LOW.

Section 5–6 Combinational Logic with VHDL

 1. A VHDL component is a predefined program describing a specified logic function.

 2. A component instantiation is used to call for a specified component in a program architecture.

 3. Interconnections between components are made using VHDL signals.

 4. Components are used in the structural approach.

Section 5–7 Troubleshooting

 1. Common gate failures are input or output open; input or output shorted to ground.

 2. Input shorted to VCC causes output to be stuck LOW.

 3. (a) G4 output is HIGH until rising edge of seventh pulse, then it goes LOW.

(b) G4 output is the same as input D.

(c) G4 output is the inverse of the G2 output shown in Figure 5–49(b).

RELATED PROBLEMS FOR EXAMPLES

 5–1 X = AB + AC + BC

 5–2 X = AB + AC + BC

 If A = 0 and B = 0, X = 0 # 0 + 0 # 1 + 0 # 1 = 0 = 1

 If A = 0 and C = 0, X = 0 # 1 + 0 # 0 + 1 # 0 = 0 = 1

 If B = 0 and C = 0, X = 1 # 0 + 1 # 0 + 0 # 0 = 0 = 1

 5–3 Determine the even-parity output for all 16 input combinations. Each combination should

have an even number of 1s including the parity bit.

 5–4 Apply codes with odd number of 1s and verify output is 1.

 5–5 Cannot be simplified

 5–6 Cannot be simplified

 5–7 X = A + B + C + D is valid.

 5–8 See Figure 5–75.

X = C (A + B)(B + D)

A

B

D

C

FIGURE 5–75

Answers 311

 5–11 X = (A + B + C) + (D + E + F) = (A + B + C)(D + E + F) = (A B + C)(D E + F)

 5–12 See Figure 5–77.

 5–13 See Figure 5–78.

 5–9 X = (ABC)(DEF) = (AB)C + (DE)F = (A + B)C + (D + E)F

 5–10 See Figure 5–76.

ABC + DE

B
C

E

B

D

E

ABC + D + E
D

A

(b)

C

A

(a)

FIGURE 5–76

A
HIGH

B

C

X

FIGURE 5–77

A

B

X

FIGURE 5–78

 5–14 See Figure 5–79.

 5–15 See Figure 5–80.

A

B

C

D

Y1

X

Y2

Y3

Y4

FIGURE 5–79

A

B

C

D

X

FIGURE 5–80

 5–16 G5: NAND_gate2 port map (A 5. IN9, B 5. IN10, X 5. OUT5);

 5–17 See Figure 5–81.

A

B

C

D

G4

FIGURE 5–81

312 Combinational Logic Analysis

TRUE/FALSE QUIZ

 1. F 2. T 3. T 4. F 5. F

 6. T 7. F 8. T 9. F 10. T

SELF-TEST

 1. (c) 2. (d) 3. (a) 4. (a) 5. (c) 6. (a) 7. (a) 8. (d)

 9. (d) 10. (e) 11. (e) 12. (c)

	Cover
	Title
	Copyright
	Contents
	Chapter 1 Introductory Concepts
	1–1 Digital and Analog Quantities
	1–2 Binary Digits, Logic Levels, and Digital Waveforms
	1–3 Basic Logic Functions
	1–4 Combinational and Sequential Logic Functions
	1–5 Introduction to Programmable Logic
	1–6 Fixed-Function Logic Devices
	1–7 Test and Measurement Instruments
	1–8 Introduction to Troubleshooting

	Chapter 2 Number Systems, Operations, and Codes
	2–1 Decimal Numbers
	2–2 Binary Numbers
	2–3 Decimal-to-Binary Conversion
	2–4 Binary Arithmetic
	2–5 Complements of Binary Numbers
	2–6 Signed Numbers
	2–7 Arithmetic Operations with Signed Numbers
	2–8 Hexadecimal Numbers
	2–9 Octal Numbers
	2–10 Binary Coded Decimal (BCD)
	2–11 Digital Codes
	2–12 Error Codes

	Chapter 3 Logic Gates
	3–1 The Inverter
	3–2 The AND Gate
	3–3 The OR Gate
	3–4 The NAND Gate
	3–5 The NOR Gate
	3–6 The Exclusive-OR and Exclusive-NOR Gates
	3–7 Programmable Logic
	3–8 Fixed-Function Logic Gates
	3–9 Troubleshooting

	Chapter 4 Boolean Algebra and Logic Simplification
	4–1 Boolean Operations and Expressions
	4–2 Laws and Rules of Boolean Algebra
	4–3 DeMorgan’s Theorems
	4–4 Boolean Analysis of Logic Circuits
	4–5 Logic Simplification Using Boolean Algebra
	4–6 Standard Forms of Boolean Expressions
	4–7 Boolean Expressions and Truth Tables
	4–8 The Karnaugh Map
	4–9 Karnaugh Map SOP Minimization
	4–10 Karnaugh Map POS Minimization
	4–11 The Quine-McCluskey Method
	4–12 Boolean Expressions with VHDL
	Applied Logic

	Chapter 5 Combinational Logic Analysis
	5–1 Basic Combinational Logic Circuits
	5–2 Implementing Combinational Logic
	5–3 The Universal Property of NAND and NOR Gates
	5–4 Combinational Logic Using NAND and NOR Gates
	5–5 Pulse Waveform Operation
	5–6 Combinational Logic with VHDL
	5–7 Troubleshooting
	Applied Logic

	Chapter 6 Functions of Combinational Logic
	6–1 Half and Full Adders
	6–2 Parallel Binary Adders
	6–3 Ripple Carry and Look-Ahead Carry Adders
	6–4 Comparators
	6–5 Decoders
	6–6 Encoders
	6–7 Code Converters
	6–8 Multiplexers (Data Selectors)
	6–9 Demultiplexers
	6–10 Parity Generators/Checkers
	6–11 Troubleshooting
	Applied Logic

	Chapter 7 Latches, Flip-Flops, and Timers
	7–1 Latches
	7–2 Flip-Flops
	7–3 Flip-Flop Operating Characteristics
	7–4 Flip-Flop Applications
	7–5 One-Shots
	7–6 The Astable Multivibrator
	7–7 Troubleshooting
	Applied Logic

	Chapter 8 Shift Registers
	8–1 Shift Register Operations
	8–2 Types of Shift Register Data I/Os
	8–3 Bidirectional Shift Registers
	8–4 Shift Register Counters
	8–5 Shift Register Applications
	8–6 Logic Symbols with Dependency Notation
	8–7 Troubleshooting
	Applied Logic

	Chapter 9 Counters
	9–1 Finite State Machines
	9–2 Asynchronous Counters
	9–3 Synchronous Counters
	9–4 Up/Down Synchronous Counters
	9–5 Design of Synchronous Counters
	9–6 Cascaded Counters
	9–7 Counter Decoding
	9–8 Counter Applications
	9–9 Logic Symbols with Dependency Notation
	9–10 Troubleshooting
	Applied Logic

	Chapter 10 Programmable Logic
	10–1 Simple Programmable Logic Devices (SPLDs)
	10–2 Complex Programmable Logic Devices (CPLDs)
	10–3 Macrocell Modes
	10–4 Field-Programmable Gate Arrays (FPGAs)
	10–5 Programmable Logic Software
	10–6 Boundary Scan Logic
	10–7 Troubleshooting
	Applied Logic

	Chapter 11 Data Storage
	11–1 Semiconductor Memory Basics
	11–2 The Random-Access Memory (RAM)
	11–3 The Read-Only Memory (ROM)
	11–4 Programmable ROMs
	11–5 The Flash Memory
	11–6 Memory Expansion
	11–7 Special Types of Memories
	11–8 Magnetic and Optical Storage
	11–9 Memory Hierarchy
	11–10 Cloud Storage
	11–11 Troubleshooting

	Chapter 12 Signal Conversion and Processing
	12–1 Analog-to-Digital Conversion
	12–2 Methods of Analog-to-Digital Conversion
	12–3 Methods of Digital-to-Analog Conversion
	12–4 Digital Signal Processing
	12–5 The Digital Signal Processor (DSP)

	Chapter 13 Data transmission
	13–1 Data Transmission Media
	13–2 Methods and Modes of Data Transmission
	13–3 Modulation of Analog Signals with Digital Data
	13–4 Modulation of Digital Signals with Analog Data
	13–5 Multiplexing and Demultiplexing
	13–6 Bus Basics
	13–7 Parallel Buses
	13–8 The Universal Serial Bus (USB)
	13–9 Other Serial Buses
	13–10 Bus Interfacing

	Chapter 14 Data Processing and Control
	14–1 The Computer System
	14–2 Practical Computer System Considerations
	14–3 The Processor: Basic Operation
	14–4 The Processor: Addressing Modes
	14–5 The Processor: Special Operations
	14–6 Operating Systems and Hardware
	14–7 Programming
	14–8 Microcontrollers and Embedded Systems
	14–9 System on Chip (SoC)

	Chapter 15 Integrated Circuit Technologies
	15–1 Basic Operational Characteristics and Parameters
	15–2 CMOS Circuits
	15–3 TTL (Bipolar) Circuits
	15–4 Practical Considerations in the Use of TTL
	15–5 Comparison of CMOS and TTL Performance
	15–6 Emitter-Coupled Logic (ECL) Circuits
	15–7 PMOS, NMOS, and E2CMOS

	Answers to Odd -Numbered Problems
	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

