Tishk International University Engineering Faculty Computer Department

Discrete Mathematics

Topic: Chapter 2/ Set Theory

Lecturer: Ghada Al-Sakkal

Set Theory set theory is a branch of mathematical logic that studies sets

Objectives of this power point

- Definition of Basic Set Theory
- Types of some familiar sets
- Explanation of Universal Sets, Subsets, Power Set, and Proper Subsets
- Operations on sets (union, intersection, difference, complement, symmetric difference)
- Definition & explanation of Duality, Ordered Pairs, and Class of sets
- Examples

Basic Set Theory

- A set is just a collection of things having some common characteristics, and will be denoted by *A*, *B*, *C*, *X*, *Y*,The things that make up a given set are called its elements or members, and will be denoted by a, b, c, x, y, ...
- Here is some of the notation we use to talk about sets. The simplest example of a set is Ø, the empty set, which has no members or elements belonging to it.
- The statement "p belonge to A" is written $p \in A$

- The negation of $p \in A$ is $p \notin A$
- {x | P} means "the set of all values of x that have the property P". For example,

 $X = \{x \mid x \text{ is an even integer }\}$ is the set of all even integers and

 $Y = \{ y: there is an integer n; y = 2n \}$

 \Rightarrow X = Y means "X and Y have the same members".

We abbreviate "if and only if" by "iff".

Notes. 1. order is not important. 2. repeated is ignored.

EXAMPLES A= {1, 2, 3, 4}

- B= { x: x is positive integer, and x > 3 }
- C= { y: y is integer and $1 \le y \le 4$ } \Rightarrow A= C

S= { x: x is an odd integer}

 $Q= \{ x: there is an integer n; x=2n+1 \} \Rightarrow S=Q$

Some Familiar Sets

• \emptyset is the smallest set, with no members. We say that the *cardinality of* \emptyset *is zero, written* $|\emptyset| = 0$.

Much bigger are the number sets, which have infinitely many members (too many to write down).

• N is Natural numbers, the set of all positive integers 1, 2, 3,... to infinity They are also called counting numbers as they are used to count objects.

(Warning: Other textbooks often use \mathbb{N} as the name for the set of non-negative integers 0, 1, 2, 3,...).

• Z is the set of all integers ...-2, -1, 0, 1, 2,...

• \mathbb{R} is the set of all real numbers, consisting of all decimal numbers Including the integers, rational numbers like -3/4 and 22/7, and irrational numbers like $\sqrt{2}$ and π .

We can build new sets from these familiar sets by forming subsets, power sets unions, intersections, complements, and ordered pairs.

Universal Set and Subsets

- Universal Set. The numbers of all sete under investigation usually belong to some fixed large set called the universal set or univers.
- We write $X \subseteq Y$ to say "X is a subset of Y",

by which we mean that every member of *X* also belongs to *Y*.

• $\emptyset \subseteq Y$ since every member of \emptyset is a member

of Y. How do we know this? Since Ø has no members, we can say anything we like about its members, for example that they are all pink, and no-one can refute our claim by giving a counterexample.

Universal Set and Subsets

- If X ⊆ Y and Y ⊆ X then X and Y must have exactly the same members, so that X = Y.
- Sometimes all the sets of interest to us are subsets of some big set *U*, which we call our universal set for that situation.
- To describe subsets of U we give some property the elements have to satisfy, for example if U = R we could use the property x > 0 to form the subset of positive real numbers {x | x > 0}.

Power sets

Examples. 1. $N \subset Z \subset Q \subset R$ 2. $U = \{1, 2, 3, ..., 10\}, A = \{1, 3, 5, 7, 9\}, B = \{2, 4, 6, 8, 10\}, C = \{1, 3, 9\}, D = \emptyset.$ Then $D \subset B, C \subset A, C \subset U, A \subset U, A \not\subset B, B \subset U, D \subset U, D \subset A, D \subset C.$

Power set. If A is a set, then the set of all subsets of A is called the power set of A and is denoted by P(A).

3. Let X = {2, 3}. The subsets of X are Ø, {2}, {3},

and { 2, 3}. If we collect these subsets of X as the elements of one big set we form the power set

 $P(X) = \{ \emptyset, \{2\}, \{3\}, \{2, 3\} \}.$

4. Let A = {1, 2, 3} \Rightarrow P(A) = {Ø, A, {1}, {2}, {3}, {1, 2}, {1, 3}, {2,3}}

Notes

But there is a difference between the relations ⊆ and ∈, for example {2} ⊆ X but {2} ∉ X while {2} ∈ P(X) but {2} ∉ P(X). (We will use the symbol ⊆ between two sets while the symbol ∈ between element and set)

•The powerset *P(X)* is bigger *X* than the original set *X*, leading to the questions:

Is P(X) always bigger than X? Can we predict the size of P(X) if we know the size of X?

Theorem

1. $A \subseteq B$ and $B \subseteq A$ if and only if A = B2. For any set A, we have $\emptyset \subset A \subset U$. 3. For any set A, we have $A \subseteq A$. 4. If A⊂ *B*, and B ⊂ *C*, then $A \subset C$.

Proper Subset

Definition. If $A \subset B$ but $A \neq B$, then we say that A is a proper subset of B.

Example 1 If $A = \{1,3\}$, $B = \{1,2,3\}$, $C = \{1,3,2\}$, then $A \subset C, B \subset C$, A is a proper subset of C but B is not a proper subset of C since B=C.

A set is finite if it has **n** distinct elements where $n \in N$.

In this case **n** is called the cardinality of A and is denoted by card(A) or n(A).

Example 2 Let $A = \{x, y, z\}$, then card(A)=3 and the power set of A, P(A)= $\{A, \emptyset, \{x\}, \{y\}, \{z\}, \{x, y\}, \{x, z\}, \{y, z\}\} \implies$ $card(P(A)) = 2^{card(A)} = 2^3 = 8$

Operations on Sets 1. Union $\Leftrightarrow \cup$

- $A \cup B = \{x : x \in A \text{ or } x \in B\}, A_1 \cup A_2 \cup \dots \cup A_n = \bigcup_{k=1}^{k=n} A_k$
- Example: $\{2, 3\} \cup \{3, 4, 5\} = \{2, 3, 4, 5\}.$
- Note that the union does not get two copies of the element 3, even though 3 belongs to { 2, 3 } and also to { 3, 4, 5 }. We put a single copy of 3 into the union of X = { 2, 3 } and Y = { 3, 4, 5 } because 3 belongs to at least one of X and Y. Notice that the union in our example is bigger than either of the two original sets.
- This invites two questions: Is *X U Y always bigger than* (have more elements than) *X and* bigger than *Y* ?
- Can we predict the size of X U Y if we know the sizes of X and of Y?
- Notice that X ⊆ X ∪ Y since every member of X belongs to X ∪ Y. Is Y also a subset of X ∪ Y?

2.Intersections $\Leftrightarrow \cap$

- $A \cap B = \{x: x \in A \text{ and } x \in B\}, A_1 \cap A_2 \cap \dots \cap A_n = \bigcap_{k=1}^{k=n} A_k$
- If $A \cap B = \emptyset$, then A & B are disjoint sets.

• Example 1.

 $\{2, 3\} \cap \{3, 4, 5\} = \{3\}.$

Note that although 3 belongs to both $X = \{2, 3\}$ and $Y = \{3, 4, 5\}$, only one copy of 3 is put into the intersection.

• Example 2.

 $\{2, 3\} \cap \{6, 7, 8\} = \emptyset$, since there are

no elements common to $X = \{ 2, 3 \}$ and $Y = \{ 6, 7, 8 \}$.

we say that the sets *X* and *Y* are *disjoint*.

Intersections

- Two questions to ponder are: Must X ∩ Y
 always be smaller (have fewer elements than) than X and smaller than Y ?
- Can we predict the size of X ∩ Y if we know the sizes of X and of Y ?
- Notice that $X \cap Y \subseteq X$ since every member of $X \cap Y$ belongs to X as well as to Y.
- Is $X \cap Y$ also a subset of Y? Is $X \cap Y$ a subset of $X \cup Y$?

3.Difference $\Leftrightarrow A - B$

 $A - B = \{x: x \in A \text{ and } x \notin B\} = A/B$ Example.1 Let $A = \{a, b, e\}, B = \{b, c, d, e\}$, then $A - B = \{a\}, B - A = \{c, d\}$ Example.2 $\{2, 3\} - \{3, 4, 5\} = \{2\}.$

4.Complement of a set $\Leftrightarrow \overline{A}$ or A^c

If we have a universal set U containing A, then U - A is abbreviated to A or A^c and we callA^c simply "the complement of A ", thus A^c = {x: x ∉ A}

Example.3 Let $A = \{x: x \text{ is an integer and } x \ge 4\}$, then

 $A^{c} = \{x: xis \text{ an integer and } x < 4\}$ Where U=R all real numbers, $A^{c} = U - A$

Complements

• Example: Suppose our universal set is $U = \mathbb{R}$.

Let $Y = \{x \mid x \ge 0\}$. Then $Y^c = \{x \mid x < 0\}$.

- Questions: Suppose we take any subset *X* of some universal set *U*.
- What is $X \cap X^c$ equal to?
- What is *X U X^c equal to*?

5. Symmetric Difference $\Leftrightarrow A \oplus B$ or $A \bigtriangleup B$

• $A \bigtriangleup B = (A \cup B) - (A \cap B)$ Example.4 $\{a, b\} \oplus \{a, c\} = (\{a, b\} \cup \{a, c\}) - (\{a, b\} \cap \{a, c\}))$ $= \{a, b, c\} - \{a\} = \{b, c\}$ $\{a, b\} \bigtriangleup \emptyset = \{a, b\}$ $\{a, b\} \bigtriangleup \{a, b\} = \emptyset$

Venn Diagrams

There is a very nice visual tool we can use to represent operations on sets. A Venn diagram displays sets as intersecting circles. We can shade the region we are talking about when we carry out an operation. We can also represent cardinality of a particular set by putting the number in the corresponding region.

Operations of Sets and Venn Diagrams

A & B are disoint sets

A & B are overlapping sets

A'is the Complement of A

 $B \subset A$ B is the proper subset of A

A & B are overlapping sets

Solving Problem

The Venn diagram shows information about the drinks some students like

How many students like tea and like coffee?

Homework

1. Let U= { 1, 2, 3, 4, ..., 15, 16} and A = multiples of 3, B = multiples of 4. Complete the Venn diagram.

2. In a case of 24 students, 12 students play the piano, 13 students play the guitar, 4 students play neither instrument. How many students only play the guitar?

Duality

Suppose *E* is an equation of set algebra. The dual $E^* of E$ is the equation obtained by replacing each occurrence of \cup, \cap , *U* and \emptyset in *E* by \cap, \cup, \emptyset, U respectively.

For example, the dual of

 $(\hat{U} \cap A) \cup (B \cap A) = A$ is $(\emptyset \cup A) \cap (B \cup A) = A$

Observe that the pairs of laws in Algebra of sets are duals of each other and it is called the principle of duality. If any equation E is an identity then its' dual E^* is also an identity.

According to principle of duality "Dual of one expression is obtained by replacing AND (Λ) with OR(V) and OR with AND together with replacement of 1 with 0 and 0 with 1.

Ordered Pairs

- In the set {2, 3}, the order in which we list the members 2 and 3 is not important so {2, 3} = {3,2} since the two descriptions single out the same elements.
- But if the order of elements is important, we may change the braces { and } to parentheses and write (2, 3).
- We read (2, 3) as "the ordered pair with 2 as first co-ordinate and 3 as second co-ordinate". That's mean $(2,3) \neq (3,2)$.
- We write X X Y to say "the Cartesian product of X and Y".
- X X Y is the set of all ordered pairs (x, y) such that x ∈ X and y ∈ Y.
- Example: {2, 3} X { 5, 6 } = {(2, 5), (2, 6), (3, 5), (3, 6) }.

Note that X and Y are sets and $X \times Y$ also is a set, but the elements of $X \times Y$ are ordered pairs.

Class of set

Let A be a set, then the set of sets that subset of A is called the class of subsets of A. That is the class of all subsets of A is a power set of A, P(A) and denoted by A.

Note that class of B is \mathcal{B} , class of C is \mathcal{C} , class of D is \mathcal{D} , ... etc.

Example.

Let $A = \{1, 2, 3, 4\}$, and \mathcal{A} be the class of subsets of A which contain exactly three elements of A then $\mathcal{A} = \{\{1, 2, 3\}, \{1, 2, 4\}, \{1, 3, 4\}, \{2, 3, 4\}\}$

Let \mathcal{B} be the class of subsets of A which contain 2 and two other elements of A, then

 $\mathcal{B} = \{\{1, 2, 3\}, \{1, 2, 4\}, \{2, 3, 4\}\} \Longrightarrow \mathcal{B} \text{ is a subclass of } \mathcal{A}.$