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Objectives

To teach students the following opinions through out the course

N L kb =

Sequences and Series

Functions of several variables

Vector in the plain and space

Limits and continuity in higher dimensions

Partial derivatives  Higher order Partial derivatives, Implicit differential, Direction denvatives and gradients



Example: Describe the formula for the following sequences

2,4,6,8,10,12, ...

Solution:

a.=2n

n

Example: Describe the formula for the following sequences

{a,} = {\/T V2, V3,.... .}
{hn} = {U*%ﬁ ,%,%*..., }

Solution

(a,} = Vn,

n—1
{ba} =~

e | D




THEOREM The following six sequences converge to the limits listed below:

I lim B2 _ 2. lim \/n = 1
i e A F i e
3. limx=1 (x>0) 4. lim x"=0 (x| <1)
H =00 F i e L
. x\" . . x"
5. ”]Lngc (1 + H) = ¢ (any x) 6. ”]erclﬂg = () (any x)

EXAMPLE Find thr values of the following functions as n essass infinity

]ﬂ(ﬁz) _ 211111_}

(a) 7 n 2:0=0 Formula 1
(b) \“/E = H!Ef" = (”1;'::]2_} [1}2 = 1 Formula 2
(c) \“/?; = 31"%[}11“""} — 11 =1 Formula 3 with x = 3 and Formula 2
l n
(d) (— E) — 0 Formula 4 with x = ,l,
n n

n—2 —2 _
(e) ( n ) = (l T T) —e? Formula 5 with x = —2

100"
(f) il —0 Formula 6 withx = 100



Example: Find the values of the following functions as n =—> oo,

(a) lim ("; l) = lim (l ——,];) = lim 1 — limu‘-,l;= 1 —0=1

n=—>20 =200 1n=>00 n=»>00

B (4/n®) — 7 -
(®) o 4= 0 _ / _0—-7 _

= lm = = —17.
n—oo n® + 3 n—x | + (3/116) I +0

Example: show that the following series converge if p>1.
o0

] 1 1 I ]
— - e — .- e
,; n? 1P N 2P N 37 N nf "

Solution If p > 1,then f(x) = 1/x” is a positive decreasing function of x. Since

DoLd.\- = /'xx"!’ dx = lim [ x 7" ]b
1 .\’p 1 h=»>00 —'p + l |

. 1
= lim —==7]
I = pp—oo \pP~!

1 )= —1

the series converges by the Integral Test.



EXAMPLE Identify the function

oo (_l)ﬂxln+1 J-:'3 Ij
= ¥y — — -|—— — e
~ 2n+1 3 5

flx) =

Solution  We differentiate the original series term by term and get

ffx)=1—-x2+x*—x*+---, —-1<x<Il.

This is a geometric series with first term 1 and ratio —x2, so

fla) = —— =

1 — (—x%) 1+ x*

We can now integrate f'(x) = 1/(1 + x?) to get

/.f’(x)tiYZ/.l fx 5 = tan 'x + C.
X

The series for f(x) is zero when x = 0, s0 C = 0. Hence

x> X X’ ]

-1l =x=1.

f(x}zx—3+ — + --- = tan ' x, —1 <x<1.

5 7



EXAMPLE Prove that the series converge

1

_ 2 3
=1 —f 4+ _ 4 .-
1 + ¢ L —t+1 !

converges on the open interval —1 << ¢ << 1. Therefore,

lm(l+:«:)=fr l dr::—ﬁ+£—i+---]x
o 1 +1 2 3 B 0
2 3 4
_ Xt x X
—XT T3 o
or
_ln—] n
ln(1+x}=2( )n I, -1 <x < 1.




EXAMPLE Find the center and radius of the sphere

2+ y?+22+3x—4z+1=0.

(x? + 3x) + > + (22 — 4z2) = —1
2 2 2 2
2 3 2 ’ —4 _ 3 —4
(x+3x+(2))-l—y—|—(z 4z+(2))— l+(2)+(2>
2
3 9 21
(x+§) P+ -2 =-1+3+4="7

From this standard form, we read that x, = —3/2,y9 = 0,zp = 2,anda = V21/2. The
center is (—3/2, 0, 2). The radius is \/5/2 )



EXAMPLE Find the (a) component form and (b) length of the vector with initial
point P(—3, 4, 1) and terminal point O(—35, 2, 2).

Solution

(a) The standard position vector v representing FT@ has components

vi=Xx—x1=—5—(-3)= -2, Vi=yps—py1=2—4= -2,

ww=z3—z1=2—-1=1.
The component form of JFT-Q 1S
v={(-2-21).
(b) The length or magnitude of v = JFT-Q 1S

v] = V(=22 + (=2)> + (1)? = V9 = 3.



EXAMPLE Find a unit vector u in the direction of the vector from P(1,0, 1) to
P5(3..2.0).

Solution  We divide Pl_}"z by its length:

1P7—(3—1)l+(2—0)j+(0—l)k—2|+2]—k

|PT}32| = VP + QP+ (-12=V4+4+1= V9 =3

PP, 2+2—-k o
u=———="—= 3 =§l+
| P\ P |

W |

-
) — 3k

The unit vector u is the direction of P,P>. o



DEFINITION Vectors u and v are orthogonal (or perpendicular) if and only
ifu-v = 0.

EXAMPLE To determine if two vectors are orthogonal, calculate their dot product.
(a) u = (3, —2)and v = (4, 6) are orthogonal because u-v = (3)(4) + (—2)(6) = 0.

(b) u=3i—2j+k and v = 2j + 4k are orthogonal because u-v = (3)(0) +
(=2)(2) + (1)(4) = 0.

Properties of the Dot Product
If u, v, and w are any vectors and ¢ is a scalar, then

l.u*v=v-u 2. (cu)*v=u-(ev) = clu-v)
J.u-(v+w)=u-v+u-w 4. u-u = |ul’

5. 0-u = 0.



DEFINITION The dot product u-v (“u dot v”’) of vectors u = (uy, uz, u3)
and v = (v, va, v3) is

U*v = vy + rvy + Uzvy.
EXAMPLE

@) (1,-2,-1)-(=6,2,-3) = (1)(=6) + (=2)(2) + (=1)(=3)
=—6-4+3= -7

(b) G: + 3j + k)-(-‘-li —j+2k) = (%)(4) + (3)(—1) + (1)(2) =1

THEOREM 1—Angle Between Two Vectors The angle # between two nonzero
vectors u = (uy, ta, u3) and v = (v, vz, v3) is given by

0 = cos! (ul Vi T+ vy T u;v;)
jul |v|




EXAMPLE Find the angle betweenu =i — 2j — 2kandv = 6i + 3j + 2k.

Solution  We use the formula above:

u-v = (1)(6) +(-2)(3) + (-2)2) =6 —6 —4 = —4
lu| = V(12 + (=22 + (=2)* = V9 =3

v = V(6?2 + B2 + (22 = V49 =7

== —1 u-v = —1 _—4 = 1
f = cos (|u||v|) Cos ((3)(?]) 1.76 radians.

EXAMPLE Findu X vandv X uifu=2i+j+ kandv = —4i + 3j + k.
Solution
wxv=| 2 1= [0 o2 ]2 )
4 3 1 3 1 —4 1 —4 3
= —2i — 6j + 10k

vXu=—(uXxXv)=2+6j— 10k



EXAMPLE Find a vector perpendicular to the plane of P(1, —1,0), Q(2, 1, —1), and
R(—1,1, 2) (Figure 12.31).

Solution  The vector PO X PR is perpendicular to the plane because it is perpendicular
to both vectors. In terms of components,

PO=02-1i+(0+1j+(-1—-0k=i+2j—k
PR=(—1—-1i+(1+Dj+(2—0k=—2i+2j+ 2k

i i k
0 x 7 l' ; 1 ‘2 —1“ ‘1 —1‘* ‘1 z‘k
= — = 1 — ]
2 2 —2 2 -2 2
-2 2 2
= 61 + 6k. m
.
P(1,-1,0)

FIGURE 31



EXAMPLE

Solution

Describe the domain of the function f(x, y) =

Since f 1s defined only where y — x

V — X

2

2 = (), the domain is the closed, un-

bounded region shown in Figure 14.4. The parabola y = x? is the boundary of the domain.

The points above the parabola make up the domain’s interior.

Outside,
2
y—x-<0

y

E

3

Interior points,
2
wherey — x= > 0

/

The parabola
2
y—x=0

is the boundary.

| > X

FIGURE
Example

0

.4 The domain of f(x, y) in
consists of the shaded region
and its bounding parabola.



EXAMPLE Graph f(x,v) = 100 — x> — y? and plot the level curves f(x,y) = 0,
f(x,y) = 51, and f(x, y) = 75 in the domain of f in the plane.

Solution The domain of f is the entire xy-plane, and the range of f is the set of real num-
bers less than or equal to 100. The graph is the paraboloid z = 100 — x? — y2 the posi-

tive portion of which 1s shown in Figure 5.
The level curve f(x, yv) = 0 is the set of points in the xy-plane at which

flx,y) = 100 — x> — y? = 0, or x? + y? =100,

which i1s the circle of radius 10 centered at the origin. Similarly, the level curves
f(x,y) = 51 and f(x, yv) = 75 (Figure 14.5) are the circles

fe,y) =100 — x> —y? =51, or x?2+y2=49
f(x,y) = 100 — x* — y? = 75, or x? + y? =25



The surface

100
z=flx, ¥
f{-r:h}'}:-l's — lm_xl_},z

is the graph of f.

f{x1 F} = 51
(a typical

—_ level curve in
the function’s
domain)

FIGURE .5 The graph and selected
level curves of the function f(x, v) in
Example 3.

The level curve f(x, y) = 100 consists of the origin alone. (It is still a level curve.)

If x* + y* > 100, then the values of f(x, y) are negative. For example, the circle
x? + y? = 144, which is the circle centered at the origin with radius 12, gives the constant
value f(x, v) = —44 and is a level curve of f. N



The curve in space in which the plane z = ¢ cuts a surface z = f(x, y) is made up of
the points that represent the function value f(x,y) — ¢. It is called the contour curve
f(x, y) = ctodistinguish it from the level curve f(x, yv) = ¢ in the domain of f. Figure .6
shows the contour curve f(x,y) = 75 on the surface z = 100 — x? — y? defined by the
function f(x,y) = 100 — x> — y2 The contour curve lies directly above the circle
x4+ yz = 25, which is the level curve f(x, y) = 75 in the function’s domain.

The contour curve f(x, y) = 100 — xZ — ),2 =75
is the circle x* + y? = 25 in the plane z = 75.

The level curve f(x, v) = 100 — xZ — y2 = 75
is the circle x? + y2 = 25 in the xy-plane.

FIGURE .6 A plane z = ¢ parallel to
the xy-plane intersecting a surface
z = f(x.y) produces a contour curve.



EXAMPLE Differentiate the following powers of x.

@ P @ @ @x ® VT

Solution

d _ d 2 _ 2 _
{a} E{IEJ — 3.]:3 1 _ 3_]::'! (h] E(IIHG} — EI{E}.‘G] 1 _ EI 1/3

d _ d |1 d 4 _ 4
(c) E(T\E) = \/E’TVE 1 (d) E(E) = E(T_q) = 4y 4l = 4y = _E

(e) i{x 4;’3} = _%I (4/3 1 — . .

(f) i(w., fx2+i-r) _ %(Ilﬂﬂzl) — (1 + E)xl+{w;2}—1 _ %(2 n 'JT)\/:-:_“

dx 2



EXAMPLE Find the derivative of y = (x? + 1)(x* + 3).

Solution

(a) From the Product Rule withu = x> + land v = x* + 3, we find

d 2 3 _ (2 2 3 d dv | du
E[(I + 1)(x” + 3)j| = (x~ + 1)(3x°) + (x” + 3)(2x) E[uv] =u_- v

= 3x* 4+ 32 + 0t + 6x
= 5x* + 3x2 + 6x.

(b) This particular product can be differentiated as well (perhaps better) by multiplying
out the original expression for y and differentiating the resulting polynomial:

y=x+ 1D +3)=x+x+ 3+ 3

dy

— 4 _|_ 5 2 i ]
o 5x 3x° + 6x



-1

EXAMPLE Find the derivative of (a) y = ERMT

(b)y=e".

Solution

(a) We apply the Quotient Rule withu = > — landv = * + 1:

dy (£ +1)-2t— (2 — 1) 3¢

dt (* + 1)

_ 2t 420 — 3% + 347
(1 + 1)

—t* + 312 + 2t
(t + 1)




X dy  .d,. d .
y = e'sinx: Iy =€ E(smx] + E(E“" SIn X
= e'cosx + e’ sinx
= ¢' (cosx + sinx)
Sinx dy :::-dx{sinx} — sinx -1

XCOSX — slnx

IE

Derivative of the Cosine Function

d .
—(cosx) = —sinx.

d>



Derivatives of the Other Basic Trigonometric Functions

Because sin x and cos x are differentiable functions of x, the related functions

¢ _ sInx fy = COSX B d -
anx = Sogy s cotx = = ==, SECX = Cosx - an csCx =
i(tﬂﬂl‘) = sec? x = (cotx) = —csc’x
dx dx
—(secx) = secxtanx i{cscx} = —cscxcotx
dx dx

sin x



EXAMPLE Find y" if y = secx.

Solution  Finding the second derivative involves a combination of trigonometric deriva-
tives.

y = secx

y = secxtanx

y' = %(secxt&nx}

= secx - d (tanx} + tanx d (secx}

= secx[seczx] + tan x(sec x tan x)

= secjx -+ secxtanzx



EXAMPLE

y = 5e* + cosx:

v _d ., d
i E(ﬁﬂ' ) + E{cnsx}
= S5¢' — sinx
y = SINXCOSX:
d.
i — smxdx (cosx) + COS X - d {smx}

= sinx(—sinx) + cosx(cosx)

= cosZx — sin°x



COS X

y = —
y ] — sinx
: d d :
dy (1 — smx}a{cnsx}u — cnsxﬁ{l — sinx)
dx (1 — sinx)?
~ (I — sinx)(—sinx) — cosx(0 — cosx)
(1 — sinx)?
_ 1l —sinx
(1 — sinx)?
]

] — sinx
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