

Question Bank-1

Name of teacher :Dr. Mazin R Khalil

Advanced Mathematics2 –ME212

Semester 4

Week 8

Date:2/4/2024

Objectives

To teach students the following opinions through out the course

- Sequences and Series
- 2 Functions of several variables
- 3 Vector in the plain and space
- 4 Limits and continuity in higher dimensions
- 5 Partial derivatives ,Higher order Partial derivatives, Implicit differential, Direction derivatives and gradients

Example: Describe the formula for the following sequences

Solution:

$$a_n = 2n$$

Example: Describe the formula for the following sequences

$$\{a_n\} = \{\sqrt{1}, \sqrt{2}, \sqrt{3}, \dots, \dots\}$$

$${b_n} = \left\{0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \dots, \dots\right\}$$

Solution

$$\{a_n\} = \sqrt{n},$$

$$\{b_n\}=\frac{n-1}{n},$$

$$1. \lim_{n\to\infty}\frac{\ln n}{n}=0$$

$$2. \lim_{n\to\infty} \sqrt[n]{n} = 1$$

3.
$$\lim_{n \to \infty} x^{1/n} = 1$$
 $(x > 0)$

4.
$$\lim_{n \to \infty} x^n = 0$$
 $(|x| < 1)$

5.
$$\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n = e^x$$
 (any x) 6. $\lim_{n \to \infty} \frac{x^n}{n!} = 0$ (any x)

$$6. \lim_{n \to \infty} \frac{x^n}{n!} = 0 \qquad (\text{any } x)$$

EXAMPLE Find thr values of the following functions as n infinity

(a)
$$\frac{\ln{(n^2)}}{n} = \frac{2 \ln n}{n} \rightarrow 2 \cdot 0 = 0$$

(b)
$$\sqrt[n]{n^2} = n^{2/n} = (n^{1/n})^2 \rightarrow (1)^2 = 1$$

(c)
$$\sqrt[n]{3n} = 3^{1/n}(n^{1/n}) \rightarrow 1 \cdot 1 = 1$$

Formula 3 with
$$x = 3$$
 and Formula 2

(d)
$$\left(-\frac{1}{2}\right)^n \rightarrow 0$$

Formula 4 with
$$x = -\frac{1}{2}$$

(e)
$$\left(\frac{n-2}{n}\right)^n = \left(1 + \frac{-2}{n}\right)^n \rightarrow e^{-2}$$

Formula 5 with
$$x = -2$$

(f)
$$\frac{100^n}{n!} \to 0$$

Formula 6 with
$$x = 100$$

Example: Find the values of the following functions as n → ∞

(a)
$$\lim_{n \to \infty} \left(\frac{n-1}{n} \right) = \lim_{n \to \infty} \left(1 - \frac{1}{n} \right) = \lim_{n \to \infty} 1 - \lim_{n \to \infty} \frac{1}{n} = 1 - 0 = 1$$

(b)
$$\lim_{n \to \infty} \frac{4 - 7n^6}{n^6 + 3} = \lim_{n \to \infty} \frac{(4/n^6) - 7}{1 + (3/n^6)} = \frac{0 - 7}{1 + 0} = -7.$$

Example: show that the following series converge if p>1.

$$\sum_{p=1}^{\infty} \frac{1}{n^p} = \frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \dots + \frac{1}{n^p} + \dots$$

Solution If p > 1, then $f(x) = 1/x^p$ is a positive decreasing function of x. Since

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx = \int_{1}^{\infty} x^{-p} dx = \lim_{b \to \infty} \left[\frac{x^{-p+1}}{-p+1} \right]_{1}^{b}$$
$$= \frac{1}{1-p} \lim_{b \to \infty} \left(\frac{1}{b^{p-1}} - 1 \right)$$
$$= \frac{1}{1-p} (0-1) = \frac{1}{p-1},$$

the series converges by the Integral Test.

Identify the function

$$f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots, \qquad -1 \le x \le 1.$$

Solution We differentiate the original series term by term and get

$$f'(x) = 1 - x^2 + x^4 - x^6 + \cdots, -1 < x < 1.$$

This is a geometric series with first term 1 and ratio $-x^2$, so

$$f'(x) = \frac{1}{1 - (-x^2)} = \frac{1}{1 + x^2}.$$

We can now integrate $f'(x) = 1/(1 + x^2)$ to get

$$\int f'(x) \, dx = \int \frac{dx}{1 + x^2} = \tan^{-1} x + C.$$

The series for f(x) is zero when x = 0, so C = 0. Hence

$$f(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots = \tan^{-1} x, \quad -1 < x < 1.$$

EXAMPLE Prove that the series converge

$$\frac{1}{1+t} = 1 - t + t^2 - t^3 + \cdots$$

converges on the open interval -1 < t < 1. Therefore,

$$\ln(1+x) = \int_0^x \frac{1}{1+t} dt = t - \frac{t^2}{2} + \frac{t^3}{3} - \frac{t^4}{4} + \cdots \Big]_0^x$$
$$= x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$$

or

$$\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^n}{n}, \qquad -1 < x < 1.$$

$$\ln 2 = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$$

Find the center and radius of the sphere

$$x^2 + y^2 + z^2 + 3x - 4z + 1 = 0.$$

$$(x^{2} + 3x) + y^{2} + (z^{2} - 4z) = -1$$

$$\left(x^{2} + 3x + \left(\frac{3}{2}\right)^{2}\right) + y^{2} + \left(z^{2} - 4z + \left(\frac{-4}{2}\right)^{2}\right) = -1 + \left(\frac{3}{2}\right)^{2} + \left(\frac{-4}{2}\right)^{2}$$

$$\left(x + \frac{3}{2}\right)^{2} + y^{2} + (z - 2)^{2} = -1 + \frac{9}{4} + 4 = \frac{21}{4}.$$

From this standard form, we read that $x_0 = -3/2$, $y_0 = 0$, $z_0 = 2$, and $a = \sqrt{21/2}$. The center is (-3/2, 0, 2). The radius is $\sqrt{21/2}$.

EXAMPLE Find the (a) component form and (b) length of the vector with initial point P(-3, 4, 1) and terminal point Q(-5, 2, 2).

Solution

(a) The standard position vector v representing \overrightarrow{PQ} has components

$$v_1 = x_2 - x_1 = -5 - (-3) = -2,$$
 $v_2 = y_2 - y_1 = 2 - 4 = -2,$

$$v_3 = z_2 - z_1 = 2 - 1 = 1$$
.

The component form of \overrightarrow{PQ} is

$$\mathbf{v} = \langle -2, -2, 1 \rangle$$
.

(b) The length or magnitude of $\mathbf{v} = \overrightarrow{PQ}$ is

$$|\mathbf{v}| = \sqrt{(-2)^2 + (-2)^2 + (1)^2} = \sqrt{9} = 3.$$

EXAMPLE Find a unit V $P_2(3, 2, 0)$.

Find a unit vector \mathbf{u} in the direction of the vector from $P_1(1, 0, 1)$ to

Solution We divide $\overrightarrow{P_1P_2}$ by its length:

$$\overrightarrow{P_1P_2} = (3-1)\mathbf{i} + (2-0)\mathbf{j} + (0-1)\mathbf{k} = 2\mathbf{i} + 2\mathbf{j} - \mathbf{k}$$

$$|\overrightarrow{P_1P_2}| = \sqrt{(2)^2 + (2)^2 + (-1)^2} = \sqrt{4+4+1} = \sqrt{9} = 3$$

$$\mathbf{u} = \frac{\overrightarrow{P_1P_2}}{|\overrightarrow{P_1P_2}|} = \frac{2\mathbf{i} + 2\mathbf{j} - \mathbf{k}}{3} = \frac{2}{3}\mathbf{i} + \frac{2}{3}\mathbf{j} - \frac{1}{3}\mathbf{k}.$$

The unit vector **u** is the direction of $\overrightarrow{P_1P_2}$.

DEFINITION

Vectors **u** and **v** are **orthogonal** (or **perpendicular**) if and only

if $\mathbf{u} \cdot \mathbf{v} = 0$.

EXAMPLE To determine if two vectors are orthogonal, calculate their dot product.

- (a) $\mathbf{u} = \langle 3, -2 \rangle$ and $\mathbf{v} = \langle 4, 6 \rangle$ are orthogonal because $\mathbf{u} \cdot \mathbf{v} = (3)(4) + (-2)(6) = 0$.
- (b) $\mathbf{u} = 3\mathbf{i} 2\mathbf{j} + \mathbf{k}$ and $\mathbf{v} = 2\mathbf{j} + 4\mathbf{k}$ are orthogonal because $\mathbf{u} \cdot \mathbf{v} = (3)(0) + (3)(0) + (3)(0)(0) + (3)(0)(0)(0)$ (-2)(2) + (1)(4) = 0.

Properties of the Dot Product

If **u**, **v**, and **w** are any vectors and c is a scalar, then

1.
$$\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$$

2.
$$(c\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (c\mathbf{v}) = c(\mathbf{u} \cdot \mathbf{v})$$

3.
$$\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$$
 4. $\mathbf{u} \cdot \mathbf{u} = |\mathbf{u}|^2$

4.
$$\mathbf{u} \cdot \mathbf{u} = |\mathbf{u}|^2$$

5.
$$0 \cdot u = 0$$
.

DEFINITION The **dot product** $\mathbf{u} \cdot \mathbf{v}$ (" \mathbf{u} dot \mathbf{v} ") of vectors $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$ and $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ is

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + u_3 v_3.$$

EXAMPLE

(a)
$$\langle 1, -2, -1 \rangle \cdot \langle -6, 2, -3 \rangle = (1)(-6) + (-2)(2) + (-1)(-3)$$

= $-6 - 4 + 3 = -7$

(b)
$$\left(\frac{1}{2}\mathbf{i} + 3\mathbf{j} + \mathbf{k}\right) \cdot (4\mathbf{i} - \mathbf{j} + 2\mathbf{k}) = \left(\frac{1}{2}\right)(4) + (3)(-1) + (1)(2) = 1$$

THEOREM 1—Angle Between Two Vectors The angle θ between two nonzero vectors $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$ and $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ is given by

$$\theta = \cos^{-1}\left(\frac{u_1v_1 + u_2v_2 + u_3v_3}{|\mathbf{u}||\mathbf{v}|}\right).$$

Find the angle between $\mathbf{u} = \mathbf{i} - 2\mathbf{j} - 2\mathbf{k}$ and $\mathbf{v} = 6\mathbf{i} + 3\mathbf{j} + 2\mathbf{k}$.

Solution We use the formula above:

$$\mathbf{u} \cdot \mathbf{v} = (1)(6) + (-2)(3) + (-2)(2) = 6 - 6 - 4 = -4$$

$$|\mathbf{u}| = \sqrt{(1)^2 + (-2)^2 + (-2)^2} = \sqrt{9} = 3$$

$$|\mathbf{v}| = \sqrt{(6)^2 + (3)^2 + (2)^2} = \sqrt{49} = 7$$

$$\theta = \cos^{-1}\left(\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}| |\mathbf{v}|}\right) = \cos^{-1}\left(\frac{-4}{(3)(7)}\right) \approx 1.76 \text{ radians}.$$

EXAMPLE

Find $\mathbf{u} \times \mathbf{v}$ and $\mathbf{v} \times \mathbf{u}$ if $\mathbf{u} = 2\mathbf{i} + \mathbf{j} + \mathbf{k}$ and $\mathbf{v} = -4\mathbf{i} + 3\mathbf{j} + \mathbf{k}$.

Solution

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 1 & 1 \\ -4 & 3 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 1 \\ 3 & 1 \end{vmatrix} \mathbf{i} - \begin{vmatrix} 2 & 1 \\ -4 & 1 \end{vmatrix} \mathbf{j} + \begin{vmatrix} 2 & 1 \\ -4 & 3 \end{vmatrix} \mathbf{k}$$
$$= -2\mathbf{i} - 6\mathbf{j} + 10\mathbf{k}$$
$$\mathbf{v} \times \mathbf{u} = -(\mathbf{u} \times \mathbf{v}) = 2\mathbf{i} + 6\mathbf{j} - 10\mathbf{k}$$

EXAMPLE Find a vector perpendicular to the plane of P(1, -1, 0), Q(2, 1, -1), and R(-1, 1, 2) (Figure 12.31).

Solution The vector $\overrightarrow{PQ} \times \overrightarrow{PR}$ is perpendicular to the plane because it is perpendicular to both vectors. In terms of components,

$$\overrightarrow{PQ} = (2-1)\mathbf{i} + (1+1)\mathbf{j} + (-1-0)\mathbf{k} = \mathbf{i} + 2\mathbf{j} - \mathbf{k}$$

$$\overrightarrow{PR} = (-1-1)\mathbf{i} + (1+1)\mathbf{j} + (2-0)\mathbf{k} = -2\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$$

$$\overrightarrow{PQ} \times \overrightarrow{PR} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & -1 \\ -2 & 2 & 2 \end{vmatrix} = \begin{vmatrix} 2 & -1 \\ 2 & 2 \end{vmatrix} \mathbf{i} - \begin{vmatrix} 1 & -1 \\ -2 & 2 \end{vmatrix} \mathbf{j} + \begin{vmatrix} 1 & 2 \\ -2 & 2 \end{vmatrix} \mathbf{k}$$

$$= 6\mathbf{i} + 6\mathbf{k}.$$

FIGURE 31

EXAMPLE Describe the domain of the function $f(x, y) = \sqrt{y - x^2}$.

Solution Since f is defined only where $y - x^2 \ge 0$, the domain is the closed, unbounded region shown in Figure 14.4. The parabola $y = x^2$ is the boundary of the domain. The points above the parabola make up the domain's interior.

FIGURE .4 The domain of f(x, y) in Example consists of the shaded region and its bounding parabola.

EXAMPLE Graph $f(x, y) = 100 - x^2 - y^2$ and plot the level curves f(x, y) = 0, f(x, y) = 51, and f(x, y) = 75 in the domain of f in the plane.

Solution The domain of f is the entire xy-plane, and the range of f is the set of real numbers less than or equal to 100. The graph is the paraboloid $z = 100 - x^2 - y^2$, the positive portion of which is shown in Figure .5.

The level curve f(x, y) = 0 is the set of points in the xy-plane at which

$$f(x, y) = 100 - x^2 - y^2 = 0$$
, or $x^2 + y^2 = 100$,

which is the circle of radius 10 centered at the origin. Similarly, the level curves f(x, y) = 51 and f(x, y) = 75 (Figure 14.5) are the circles

$$f(x, y) = 100 - x^2 - y^2 = 51$$
, or $x^2 + y^2 = 49$
 $f(x, y) = 100 - x^2 - y^2 = 75$, or $x^2 + y^2 = 25$.

FIGURE .5 The graph and selected level curves of the function f(x, y) in Example 3.

The level curve f(x, y) = 100 consists of the origin alone. (It is still a level curve.)

If $x^2 + y^2 > 100$, then the values of f(x, y) are negative. For example, the circle $x^2 + y^2 = 144$, which is the circle centered at the origin with radius 12, gives the constant value f(x, y) = -44 and is a level curve of f.

The curve in space in which the plane z = c cuts a surface z = f(x, y) is made up of the points that represent the function value f(x, y) = c. It is called the **contour curve** f(x, y) = c to distinguish it from the level curve f(x, y) = c in the domain of f. Figure .6 shows the contour curve f(x, y) = 75 on the surface $z = 100 - x^2 - y^2$ defined by the function $f(x, y) = 100 - x^2 - y^2$. The contour curve lies directly above the circle $x^2 + y^2 = 25$, which is the level curve f(x, y) = 75 in the function's domain.

The contour curve $f(x, y) = 100 - x^2 - y^2 = 75$ is the circle $x^2 + y^2 = 25$ in the plane z = 75.

The level curve $f(x, y) = 100 - x^2 - y^2 = 75$ is the circle $x^2 + y^2 = 25$ in the xy-plane.

FIGURE .6 A plane z = c parallel to the *xy*-plane intersecting a surface z = f(x, y) produces a contour curve.

Differentiate the following powers of x.

(a)
$$x^3$$

(b)
$$x^{2/3}$$

(c)
$$x^{\sqrt{2}}$$

(d)
$$\frac{1}{x^4}$$

(e)
$$x^{-4/3}$$

(a)
$$x^3$$
 (b) $x^{2/3}$ (c) $x^{\sqrt{2}}$ (d) $\frac{1}{x^4}$ (e) $x^{-4/3}$ (f) $\sqrt{x^{2+\pi}}$

Solution

(a)
$$\frac{d}{d}(x^3) = 3x^{3-1} = 3x^2$$

(a)
$$\frac{d}{dx}(x^3) = 3x^{3-1} = 3x^2$$
 (b) $\frac{d}{dx}(x^{2/3}) = \frac{2}{3}x^{(2/3)-1} = \frac{2}{3}x^{-1/3}$

(c)
$$\frac{d}{dx}(x^{\sqrt{2}}) = \sqrt{2}x^{\sqrt{2}-1}$$

(c)
$$\frac{d}{dx}(x^{\sqrt{2}}) = \sqrt{2}x^{\sqrt{2}-1}$$
 (d) $\frac{d}{dx}(\frac{1}{x^4}) = \frac{d}{dx}(x^{-4}) = -4x^{-4-1} = -4x^{-5} = -\frac{4}{x^5}$

(e)
$$\frac{d}{dx}(x^{-4/3}) = -\frac{4}{3}x^{-(4/3)-1} = \frac{1}{3}$$
...

(f)
$$\frac{d}{dx} \left(\sqrt{x^{2+\pi}} \right) = \frac{d}{dx} \left(x^{1+(\pi/2)} \right) = \left(1 + \frac{\pi}{2} \right) x^{1+(\pi/2)-1} = \frac{1}{2} (2 + \pi) \sqrt{x^{\pi}}$$

Find the derivative of $y = (x^2 + 1)(x^3 + 3)$.

Solution

(a) From the Product Rule with $u = x^2 + 1$ and $v = x^3 + 3$, we find

$$\frac{d}{dx}[(x^2+1)(x^3+3)] = (x^2+1)(3x^2) + (x^3+3)(2x) \qquad \frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$$
$$= 3x^4 + 3x^2 + 2x^4 + 6x$$
$$= 5x^4 + 3x^2 + 6x.$$

(b) This particular product can be differentiated as well (perhaps better) by multiplying out the original expression for *y* and differentiating the resulting polynomial:

$$y = (x^2 + 1)(x^3 + 3) = x^5 + x^3 + 3x^2 + 3$$
$$\frac{dy}{dx} = 5x^4 + 3x^2 + 6x.$$

Find the derivative of **(a)**
$$y = \frac{t^2 - 1}{t^3 + 1}$$
, **(b)** $y = e^{-x}$.

Solution

(a) We apply the Quotient Rule with $u = t^2 - 1$ and $v = t^3 + 1$:

$$\frac{dy}{dt} = \frac{(t^3 + 1) \cdot 2t - (t^2 - 1) \cdot 3t^2}{(t^3 + 1)^2}$$

$$= \frac{2t^4 + 2t - 3t^4 + 3t^2}{(t^3 + 1)^2}$$

$$= \frac{-t^4 + 3t^2 + 2t}{(t^3 + 1)^2}.$$

(b)
$$\frac{d}{dx}(e^{-x}) = \frac{d}{dx}\left(\frac{1}{e^x}\right) = \frac{e^x \cdot 0 - 1 \cdot e^x}{(e^x)^2} = \frac{-1}{e^x} = -e^{-x}$$

(

$$y = e^{x} \sin x: \qquad \frac{dy}{dx} = e^{x} \frac{d}{dx} (\sin x) + \frac{d}{dx} (e^{x}) \sin x$$

$$= e^{x} \cos x + e^{x} \sin x$$

$$= e^{x} (\cos x + \sin x)$$

$$y = \frac{\sin x}{x}: \qquad \frac{dy}{dx} = \frac{x \cdot \frac{d}{dx} (\sin x) - \sin x \cdot 1}{x^{2}}$$

$$= \frac{x \cos x - \sin x}{x^{2}}$$

Derivative of the Cosine Function

$$\frac{d}{dx}(\cos x) = -\sin x.$$

Derivatives of the Other Basic Trigonometric Functions

Because $\sin x$ and $\cos x$ are differentiable functions of x, the related functions

$$\tan x = \frac{\sin x}{\cos x}$$
, $\cot x = \frac{\cos x}{\sin x}$, $\sec x = \frac{1}{\cos x}$, and $\csc x = \frac{1}{\sin x}$

$$\frac{d}{dx}(\tan x) = \sec^2 x$$

$$\frac{d}{dx}(\cot x) = -\csc^2 x$$

$$\frac{d}{dx}(\sec x) = \sec x \tan x$$

$$\frac{d}{dx}(\csc x) = -\csc x \cot x$$

Find y'' if $y = \sec x$.

Solution Finding the second derivative involves a combination of trigonometric derivatives.

$$y = \sec x$$

$$y' = \sec x \tan x$$

$$y'' = \frac{d}{dx} (\sec x \tan x)$$

$$= \sec x \frac{d}{dx} (\tan x) + \tan x \frac{d}{dx} (\sec x)$$

$$= \sec x (\sec^2 x) + \tan x (\sec x \tan x)$$

$$= \sec^3 x + \sec x \tan^2 x$$

$$y = 5e^x + \cos x$$
:

$$\frac{dy}{dx} = \frac{d}{dx}(5e^x) + \frac{d}{dx}(\cos x)$$
$$= 5e^x - \sin x$$

 $y = \sin x \cos x$:

$$\frac{dy}{dx} = \sin x \frac{d}{dx} (\cos x) + \cos x \frac{d}{dx} (\sin x)$$
$$= \sin x (-\sin x) + \cos x (\cos x)$$
$$= \cos^2 x - \sin^2 x$$

$$y = \frac{\cos x}{1 - \sin x}:$$

$$\frac{dy}{dx} = \frac{(1 - \sin x)\frac{d}{dx}(\cos x) - \cos x\frac{d}{dx}(1 - \sin x)}{(1 - \sin x)^2}$$

$$= \frac{(1 - \sin x)(-\sin x) - \cos x(0 - \cos x)}{(1 - \sin x)^2}$$

$$= \frac{1 - \sin x}{(1 - \sin x)^2}$$

$$= \frac{1}{1 - \sin x}$$

References

- 1. Thomas' Calculus" 11th edition
- 2. Calculus Early Transcendental Functions" by Ron Larson and Bruce Edwards