

Question Bank-1

Name of teacher :Dr. Mazin R Khalil

Advanced Mathematics2-ME212
Semester 4
Week 8
Date :2/4/2024

Objectives

To teach students the following opinions through out the course

1 Sequences and Series
2 Functions of several variables
3 Vector in the plain and space
4 Limits and continuity in higher dimensions
5 Partial derivatives, Higher order Partial derivatives, Implicit differential, Direction derivatives and gradients

Example: Describe the formula for the following sequences
$2,4,6,8,10,12, \ldots$

Solution:

$$
a_{n}=2 n
$$

Example: Describe the formula for the following sequences
$\left\{a_{n}\right\}=\{\sqrt{1}, \sqrt{2}, \sqrt{3}, \ldots, \ldots\}$
$\left\{b_{n}\right\}=\left\{0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \ldots, \ldots\right\}$
Solution
$\left\{a_{n}\right\}=\sqrt{n}$,
$\left\{b_{n}\right\}=\frac{n-1}{n}$,

1. $\lim _{n \rightarrow \infty} \frac{\ln n}{n}=0$
2. $\lim _{n \rightarrow \infty} x^{1 / n}=1 \quad(x>0)$
3. $\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}=e^{x} \quad($ any $x)$

EXAMPLE Find thr values of the following functions as n infinity
(a) $\frac{\ln \left(n^{2}\right)}{n}=\frac{2 \ln n}{n} \rightarrow 2 \cdot 0=0$
(b) $\sqrt[n]{n^{2}}=n^{2 / n}=\left(n^{1 / n}\right)^{2} \rightarrow(1)^{2}=1$
(c) $\sqrt[n]{3 n}=3^{1 / n}\left(n^{1 / n}\right) \rightarrow 1 \cdot 1=1$
(d) $\left(-\frac{1}{2}\right)^{n} \rightarrow 0$
(e) $\left(\frac{n-2}{n}\right)^{n}=\left(1+\frac{-2}{n}\right)^{n} \rightarrow e^{-2}$
(f) $\frac{100^{n}}{n!} \rightarrow 0$

Formula 1
Formula 2
Formula 3 with $x=3$ and Formula 2
Formula 4 with $x=-\frac{1}{2}$
Formula 5 with $x=-2$

Formula 6 with $x=100$

Example: Find the values of the following functions as $n \longrightarrow \infty$.
(a) $\lim _{n \rightarrow \infty}\left(\frac{n-1}{n}\right)=\lim _{n \rightarrow \infty}\left(1-\frac{1}{n}\right)=\lim _{n \rightarrow \infty} 1-\lim _{n \rightarrow \infty} \frac{1}{n}=1-0=1$
(b) $\lim _{n \rightarrow \infty} \frac{4-7 n^{6}}{n^{6}+3}=\lim _{n \rightarrow \infty} \frac{\left(4 / n^{6}\right)-7}{1+\left(3 / n^{6}\right)}=\frac{0-7}{1+0}=-7$.

Example: show that the following series converge if $\mathrm{p}>1$.

$$
\sum_{n=1}^{\infty} \frac{1}{n^{p}}=\frac{1}{1^{p}}+\frac{1}{2^{p}}+\frac{1}{3^{p}}+\cdots+\frac{1}{n^{p}}+\cdots
$$

Solution If $p>1$, then $f(x)=1 / x^{p}$ is a positive decreasing function of x. Since

$$
\begin{aligned}
\int_{1}^{\infty} \frac{1}{x^{p}} d x & =\int_{1}^{\infty} x^{-p} d x=\lim _{b \rightarrow \infty}\left[\frac{x^{-p+1}}{-p+1}\right]_{1}^{b} \\
& =\frac{1}{1-p} \lim _{b \rightarrow \infty}\left(\frac{1}{b^{p-1}}-1\right) \\
& =\frac{1}{1-p}(0-1)=\frac{1}{p-1}
\end{aligned}
$$

the series converges by the Integral Test.

EXAMPLE Identify the function

$$
f(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\cdots, \quad-1 \leq x \leq 1
$$

Solution We differentiate the original series term by term and get

$$
f^{\prime}(x)=1-x^{2}+x^{4}-x^{6}+\cdots, \quad-1<x<1
$$

This is a geometric series with first term 1 and ratio $-x^{2}$, so

$$
f^{\prime}(x)=\frac{1}{1-\left(-x^{2}\right)}=\frac{1}{1+x^{2}}
$$

We can now integrate $f^{\prime}(x)=1 /\left(1+x^{2}\right)$ to get

$$
\int f^{\prime}(x) d x=\int \frac{d x}{1+x^{2}}=\tan ^{-1} x+C
$$

The series for $f(x)$ is zero when $x=0$, so $C=0$. Hence

$$
f(x)=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots=\tan ^{-1} x, \quad-1<x<1
$$

EXAMPLE Prove that the series converge

$$
\frac{1}{1+t}=1-t+t^{2}-t^{3}+\cdots
$$

converges on the open interval $-1<t<1$. Therefore,

$$
\begin{aligned}
\ln (1+x) & \left.=\int_{0}^{x} \frac{1}{1+t} d t=t-\frac{t^{2}}{2}+\frac{t^{3}}{3}-\frac{t^{4}}{4}+\cdots\right]_{0}^{x} \\
& =x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots
\end{aligned}
$$

or

$$
\begin{aligned}
& \ln (1+x)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{n}}{n}, \quad-1<x<1 . \\
& \ln 2=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}
\end{aligned}
$$

EXAMPLE

Find the center and radius of the sphere

$$
\begin{gathered}
x^{2}+y^{2}+z^{2}+3 x-4 z+1=0 . \\
\left(x^{2}+3 x\right)+y^{2}+\left(z^{2}-4 z\right)=-1 \\
\left(x^{2}+3 x+\left(\frac{3}{2}\right)^{2}\right)+y^{2}+\left(z^{2}-4 z+\left(\frac{-4}{2}\right)^{2}\right)=-1+\left(\frac{3}{2}\right)^{2}+\left(\frac{-4}{2}\right)^{2} \\
\left(x+\frac{3}{2}\right)^{2}+y^{2}+(z-2)^{2}=-1+\frac{9}{4}+4=\frac{21}{4} .
\end{gathered}
$$

From this standard form, we read that $x_{0}=-3 / 2, y_{0}=0, z_{0}=2$, and $a=\sqrt{21} / 2$. The center is $(-3 / 2,0,2)$. The radius is $\sqrt{21 / 2}$.

EXAMPLE Find the (a) component form and (b) length of the vector with initial point $P(-3,4,1)$ and terminal point $Q(-5,2,2)$.

Solution

(a) The standard position vector \mathbf{v} representing $\overrightarrow{P Q}$ has components

$$
v_{1}=x_{2}-x_{1}=-5-(-3)=-2, \quad v_{2}=y_{2}-y_{1}=2-4=-2,
$$

$$
v_{3}=z_{2}-z_{1}=2-1=1
$$

The component form of $\overrightarrow{P Q}$ is

$$
\mathbf{v}=\langle-2,-2,1\rangle .
$$

(b) The length or magnitude of $\mathbf{v}=\overrightarrow{P Q}$ is

$$
|\mathbf{v}|=\sqrt{(-2)^{2}+(-2)^{2}+(1)^{2}}=\sqrt{9}=3 .
$$

Solution We divide $\vec{P}_{1} P_{2}$ by its length:

$$
\begin{aligned}
\overrightarrow{P_{1} P_{2}} & =(3-1) \mathbf{i}+(2-0) \mathbf{j}+(0-1) \mathbf{k}=2 \mathbf{i}+2 \mathbf{j}-\mathbf{k} \\
\left|\stackrel{\rightharpoonup}{P_{1} P_{2}}\right| & =\sqrt{(2)^{2}+(2)^{2}+(-1)^{2}}=\sqrt{4+4+1}=\sqrt{9}=3 \\
\mathbf{u} & =\frac{\stackrel{\rightharpoonup}{P_{1} P_{2}}}{\left|\overrightarrow{P_{1} P_{2}}\right|}=\frac{2 \mathbf{i}+2 \mathbf{j}-\mathbf{k}}{3}=\frac{2}{3} \mathbf{i}+\frac{2}{3} \mathbf{j}-\frac{1}{3} \mathbf{k} .
\end{aligned}
$$

The unit vector \mathbf{u} is the direction of $\overrightarrow{P_{1} P_{2}}$.

DEFINITION Vectors \mathbf{u} and \mathbf{v} are orthogonal (or perpendicular) if and only if $\mathbf{u} \cdot \mathbf{v}=0$.

EXAMPLE To determine if two vectors are orthogonal, calculate their dot product.
(a) $\mathbf{u}=\langle 3,-2\rangle$ and $\mathbf{v}=\langle 4,6\rangle$ are orthogonal because $\mathbf{u} \cdot \mathbf{v}=(3)(4)+(-2)(6)=0$.
(b) $\mathbf{u}=3 \mathbf{i}-2 \mathbf{j}+\mathbf{k}$ and $\mathbf{v}=2 \mathbf{j}+4 \mathbf{k}$ are orthogonal because $\mathbf{u} \cdot \mathbf{v}=(3)(0)+$ $(-2)(2)+(1)(4)=0$.

Properties of the Dot Product

If \mathbf{u}, \mathbf{v}, and \mathbf{w} are any vectors and c is a scalar, then

1. $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$
2. $(c \mathbf{u}) \cdot \mathbf{v}=\mathbf{u} \cdot(c \mathbf{v})=c(\mathbf{u} \cdot \mathbf{v})$
3. $\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})=\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w}$
4. $\mathbf{u} \cdot \mathbf{u}=|\mathbf{u}|^{2}$
5. $\mathbf{0} \cdot \mathbf{u}=0$.

DEFINITION The dot product $\mathbf{u} \cdot \mathbf{v}$ ("u dot \mathbf{v} ") of vectors $\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ and $\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ is

$$
\mathbf{u} \cdot \mathbf{v}=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3} .
$$

EXAMPLE

(a) $\langle 1,-2,-1\rangle \cdot\langle-6,2,-3\rangle=(1)(-6)+(-2)(2)+(-1)(-3)$ $=-6-4+3=-7$
(b) $\left(\frac{1}{2} \mathbf{i}+3 \mathbf{j}+\mathbf{k}\right) \cdot(4 \mathbf{i}-\mathbf{j}+2 \mathbf{k})=\left(\frac{1}{2}\right)(4)+(3)(-1)+(1)(2)=1$

THEOREM 1—Angle Between Two Vectors The angle θ between two nonzero vectors $\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ and $\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ is given by

$$
\theta=\cos ^{-1}\left(\frac{u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}}{|\mathbf{u}||\mathbf{v}|}\right)
$$

Solution We use the formula above:

$$
\begin{aligned}
\mathbf{u} \cdot \mathbf{v} & =(1)(6)+(-2)(3)+(-2)(2)=6-6-4=-4 \\
|\mathbf{u}| & =\sqrt{(1)^{2}+(-2)^{2}+(-2)^{2}}=\sqrt{9}=3 \\
|\mathbf{v}| & =\sqrt{(6)^{2}+(3)^{2}+(2)^{2}}=\sqrt{49}=7 \\
\theta & =\cos ^{-1}\left(\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}||\mathbf{v}|}\right)=\cos ^{-1}\left(\frac{-4}{(3)(7)}\right) \approx 1.76 \text { radians. }
\end{aligned}
$$

EXAMPLE \quad Find $\mathbf{u} \times \mathbf{v}$ and $\mathbf{v} \times \mathbf{u}$ if $\mathbf{u}=2 \mathbf{i}+\mathbf{j}+\mathbf{k}$ and $\mathbf{v}=-4 \mathbf{i}+3 \mathbf{j}+\mathbf{k}$.

Solution

$$
\begin{aligned}
\mathbf{u} \times \mathbf{v} & =\left|\begin{array}{rrr}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
2 & 1 & 1 \\
-4 & 3 & 1
\end{array}\right|=\left|\begin{array}{ll}
1 & 1 \\
3 & 1
\end{array}\right| \mathbf{i}-\left|\begin{array}{rr}
2 & 1 \\
-4 & 1
\end{array}\right| \mathbf{j}+\left|\begin{array}{rr}
2 & 1 \\
-4 & 3
\end{array}\right| \mathbf{k} \\
& =-2 \mathbf{i}-6 \mathbf{j}+10 \mathbf{k} \\
\mathbf{v} \times \mathbf{u} & =-(\mathbf{u} \times \mathbf{v})=2 \mathbf{i}+6 \mathbf{j}-10 \mathbf{k}
\end{aligned}
$$

EXAMPLE Find a vector perpendicular to the plane of $P(1,-1,0), Q(2,1,-1)$, and $R(-1,1,2)$ (Figure 12.31).

Solution The vector $\overrightarrow{P Q} \times \overrightarrow{P R}$ is perpendicular to the plane because it is perpendicular to both vectors. In terms of components,

$$
\begin{aligned}
\overrightarrow{P Q} & =(2-1) \mathbf{i}+(1+1) \mathbf{j}+(-1-0) \mathbf{k}=\mathbf{i}+2 \mathbf{j}-\mathbf{k} \\
\overrightarrow{P R} & =(-1-1) \mathbf{i}+(1+1) \mathbf{j}+(2-0) \mathbf{k}=-2 \mathbf{i}+2 \mathbf{j}+2 \mathbf{k} \\
\overrightarrow{P Q} \times \stackrel{\rightharpoonup}{P R} & =\left|\begin{array}{rrr}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 2 & -1 \\
-2 & 2 & 2
\end{array}\right|=\left|\begin{array}{rr}
2 & -1 \\
2 & 2
\end{array}\right| \mathbf{i}-\left|\begin{array}{rr}
1 & -1 \\
-2 & 2
\end{array}\right| \mathbf{j}+\left|\begin{array}{rr}
1 & 2 \\
-2 & 2
\end{array}\right| \mathbf{k} \\
& =6 \mathbf{i}+6 \mathbf{k} .
\end{aligned}
$$

EXAMPLE Describe the domain of the function $f(x, y)=\sqrt{y-x^{2}}$.
Solution Since f is defined only where $y-x^{2} \geq 0$, the domain is the closed, unbounded region shown in Figure 14.4. The parabola $y=x^{2}$ is the boundary of the domain. The points above the parabola make up the domain's interior.

FIGURE . 4 The domain of $f(x, y)$ in Example consists of the shaded region and its bounding parabola.

EXAMPLE Graph $f(x, y)=100-x^{2}-y^{2}$ and plot the level curves $f(x, y)=0$, $f(x, y)=51$, and $f(x, y)=75$ in the domain of f in the plane.

Solution The domain of f is the entire $x y$-plane, and the range of f is the set of real numbers less than or equal to 100 . The graph is the paraboloid $z=100-x^{2}-y^{2}$, the positive portion of which is shown in Figure .5 .

The level curve $f(x, y)=0$ is the set of points in the $x y$-plane at which

$$
f(x, y)=100-x^{2}-y^{2}=0, \quad \text { or } \quad x^{2}+y^{2}=100
$$

which is the circle of radius 10 centered at the origin. Similarly, the level curves $f(x, y)=51$ and $f(x, y)=75$ (Figure 14.5) are the circles

$$
\begin{array}{lll}
f(x, y)=100-x^{2}-y^{2}=51, & \text { or } & x^{2}+y^{2}=49 \\
f(x, y)=100-x^{2}-y^{2}=75, & \text { or } & x^{2}+y^{2}=25 .
\end{array}
$$

FIGURE . 5 The graph and selected level curves of the function $f(x, y)$ in Example 3.

The level curve $f(x, y)=100$ consists of the origin alone. (It is still a level curve.) If $x^{2}+y^{2}>100$, then the values of $f(x, y)$ are negative. For example, the circle $x^{2}+y^{2}=144$, which is the circle centered at the origin with radius 12 , gives the constant value $f(x, y)=-44$ and is a level curve of f.

The curve in space in which the plane $z=c$ cuts a surface $z=f(x, y)$ is made up of the points that represent the function value $f(x, y)-c$. It is called the contour curve $f(x, y)=c$ to distinguish it from the level curve $f(x, y)=c$ in the domain of f. Figure . 6 shows the contour curve $f(x, y)=75$ on the surface $z=100-x^{2}-y^{2}$ defined by the function $f(x, y)=100-x^{2}-y^{2}$. The contour curve lies directly above the circle $x^{2}+y^{2}=25$, which is the level curve $f(x, y)=75$ in the function's domain.

FIGURE -6 A plane $z=c$ parallel to the $x y$-plane intersecting a surface $z=f(x, y)$ produces a contour curve.

EXAMPLE Differentiate the following powers of x.

(a) x^{3}
(b) $x^{2 / 3}$
(c) $x^{\sqrt{2}}$
(d) $\frac{1}{x^{4}}$
(e) $x^{-4 / 3}$
(f) $\sqrt{x^{2+\pi}}$

Solution

(a) $\frac{d}{d x}\left(x^{3}\right)=3 x^{3-1}=3 x^{2}$
(b) $\frac{d}{d x}\left(x^{2 / 3}\right)=\frac{2}{3} x^{(2 / 3)-1}=\frac{2}{3} x^{-1 / 3}$
(c) $\frac{d}{d x}\left(x^{\sqrt{2}}\right)=\sqrt{2} x^{\sqrt{2}-1}$
(d) $\frac{d}{d x}\left(\frac{1}{x^{4}}\right)=\frac{d}{d x}\left(x^{-4}\right)=-4 x^{-4-1}=-4 x^{-5}=-\frac{4}{x^{5}}$
(e) $\frac{d}{d x}\left(x^{4 / 3}\right)=-\frac{4}{3} x^{(4 / 3)}{ }^{1}=$
(f) $\frac{d}{d x}\left(\sqrt{x^{2+\pi}}\right)=\frac{d}{d x}\left(x^{1+(\pi / 2)}\right)=\left(1+\frac{\pi}{2}\right) x^{1+(\pi / 2)-1}=\frac{1}{2}(2+\pi) \sqrt{x^{\pi}}$

EXAMPLE Find the derivative of $y=\left(x^{2}+1\right)\left(x^{3}+3\right)$.

Solution

(a) From the Product Rule with $u=x^{2}+1$ and $v=x^{3}+3$, we find

$$
\begin{aligned}
\frac{d}{d x}\left[\left(x^{2}+1\right)\left(x^{3}+3\right)\right] & =\left(x^{2}+1\right)\left(3 x^{2}\right)+\left(x^{3}+3\right)(2 x) \quad \frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x} \\
& =3 x^{4}+3 x^{2}+2 x^{4}+6 x \\
& =5 x^{4}+3 x^{2}+6 x
\end{aligned}
$$

(b) This particular product can be differentiated as well (perhaps better) by multiplying out the original expression for y and differentiating the resulting polynomial:

$$
\begin{aligned}
y & =\left(x^{2}+1\right)\left(x^{3}+3\right)=x^{5}+x^{3}+3 x^{2}+3 \\
\frac{d y}{d x} & =5 x^{4}+3 x^{2}+6 x .
\end{aligned}
$$

EXAMPLE \quad Find the derivative of (a) $y=\frac{t^{2}-1}{t^{3}+1}, \quad$ (b) $y=e^{-x}$.

Solution
(a) We apply the Quotient Rule with $u=t^{2}-1$ and $v=t^{3}+1$:

$$
\begin{aligned}
\frac{d y}{d t} & =\frac{\left(t^{3}+1\right) \cdot 2 t-\left(t^{2}-1\right) \cdot 3 t^{2}}{\left(t^{3}+1\right)^{2}} \\
& =\frac{2 t^{4}+2 t-3 t^{4}+3 t^{2}}{\left(t^{3}+1\right)^{2}} \\
& =\frac{-t^{4}+3 t^{2}+2 t}{\left(t^{3}+1\right)^{2}}
\end{aligned}
$$

(b) $\frac{d}{d x}\left(e^{-x}\right)=\frac{d}{d x}\left(\frac{1}{e^{x}}\right)=\frac{e^{x} \cdot 0-1 \cdot e^{x}}{\left(e^{x}\right)^{2}}=\frac{-1}{e^{x}}=-e^{-x}$

$$
y=e^{x} \sin x
$$

$$
\begin{aligned}
\frac{d y}{d x} & =e^{x} \frac{d}{d x}(\sin x)+\frac{d}{d x}\left(e^{x}\right) \sin x \\
& =e^{x} \cos x+e^{x} \sin x \\
& =e^{x}(\cos x+\sin x)
\end{aligned}
$$

$$
y=\frac{\sin x}{x}: \quad \frac{d y}{d x}=\frac{x \cdot \frac{d}{d x}(\sin x)-\sin x \cdot 1}{x^{2}}
$$

$$
=\frac{x \cos x-\sin x}{x^{2}}
$$

Derivative of the Cosine Function

$$
\frac{d}{d x}(\cos x)=-\sin x
$$

Derivatives of the Other Basic Trigonometric Functions

Because $\sin x$ and $\cos x$ are differentiable functions of x, the related functions

$$
\tan x=\frac{\sin x}{\cos x}, \quad \cot x=\frac{\cos x}{\sin x}, \quad \sec x=\frac{1}{\cos x}, \quad \text { and } \quad \csc x=\frac{1}{\sin x}
$$

$$
\frac{d}{d x}(\tan x)=\sec ^{2} x
$$

$$
\frac{d}{d x}(\cot x)=-\csc ^{2} x
$$

$$
\frac{d}{d x}(\sec x)=\sec x \tan x
$$

$$
\frac{d}{d x}(\csc x)=-\csc x \cot x
$$

EXAMPLE Find $y^{\prime \prime}$ if $y=\sec x$.

Solution Finding the second derivative involves a combination of trigonometric derivatives.

$$
\begin{aligned}
y & =\sec x \\
y^{\prime} & =\sec x \tan x \\
y^{\prime \prime} & =\frac{d}{d x}(\sec x \tan x) \\
& =\sec x \frac{d}{d x}(\tan x)+\tan x \frac{d}{d x}(\sec x) \\
& =\sec x\left(\sec ^{2} x\right)+\tan x(\sec x \tan x) \\
& =\sec ^{3} x+\sec x \tan ^{2} x
\end{aligned}
$$

EXAMPLE

$$
y=5 e^{x}+\cos x:
$$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x}\left(5 e^{x}\right)+\frac{d}{d x}(\cos x) \\
& =5 e^{x}-\sin x
\end{aligned}
$$

$y=\sin x \cos x:$

$$
\begin{aligned}
\frac{d y}{d x} & =\sin x \frac{d}{d x}(\cos x)+\cos x \frac{d}{d x}(\sin x) \\
& =\sin x(-\sin x)+\cos x(\cos x) \\
& =\cos ^{2} x-\sin ^{2} x
\end{aligned}
$$

$$
\begin{aligned}
& y=\frac{\cos x}{1-\sin x} \\
& \begin{aligned}
\frac{d y}{d x} & =\frac{(1-\sin x) \frac{d}{d x}(\cos x)-\cos x \frac{d}{d x}(1-\sin x)}{(1-\sin x)^{2}} \\
& =\frac{(1-\sin x)(-\sin x)-\cos x(0-\cos x)}{(1-\sin x)^{2}} \\
& =\frac{1-\sin x}{(1-\sin x)^{2}} \\
& =\frac{1}{1-\sin x}
\end{aligned}
\end{aligned}
$$

References

1. Thomas' Calculus" 11th edition
2. Calculus Early Transcendental Functions" by Ron Larson and Bruce Edwards
