

Tishk International University IT Department Course Code: IT-344/A

Introduction to Machine Learning

Regression 02

Spring 2024 Hemin Ibrahim, PhD hemin.ibrahim@tiu.edu.iq

Lecture 8

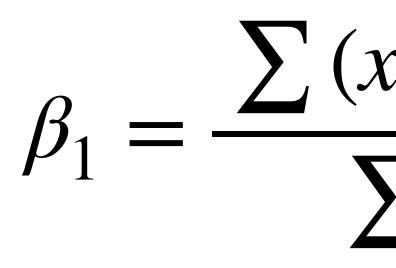
Outline

- Estimating the Slop Coefficient
- Evaluate metrics for regression
 - MAE
 - MSE
 - R²
- Polynomial Regression

nt on

Estimating the Slope Coefficient (β_1)

- The equation for estimating the slope coefficient eta_1 is

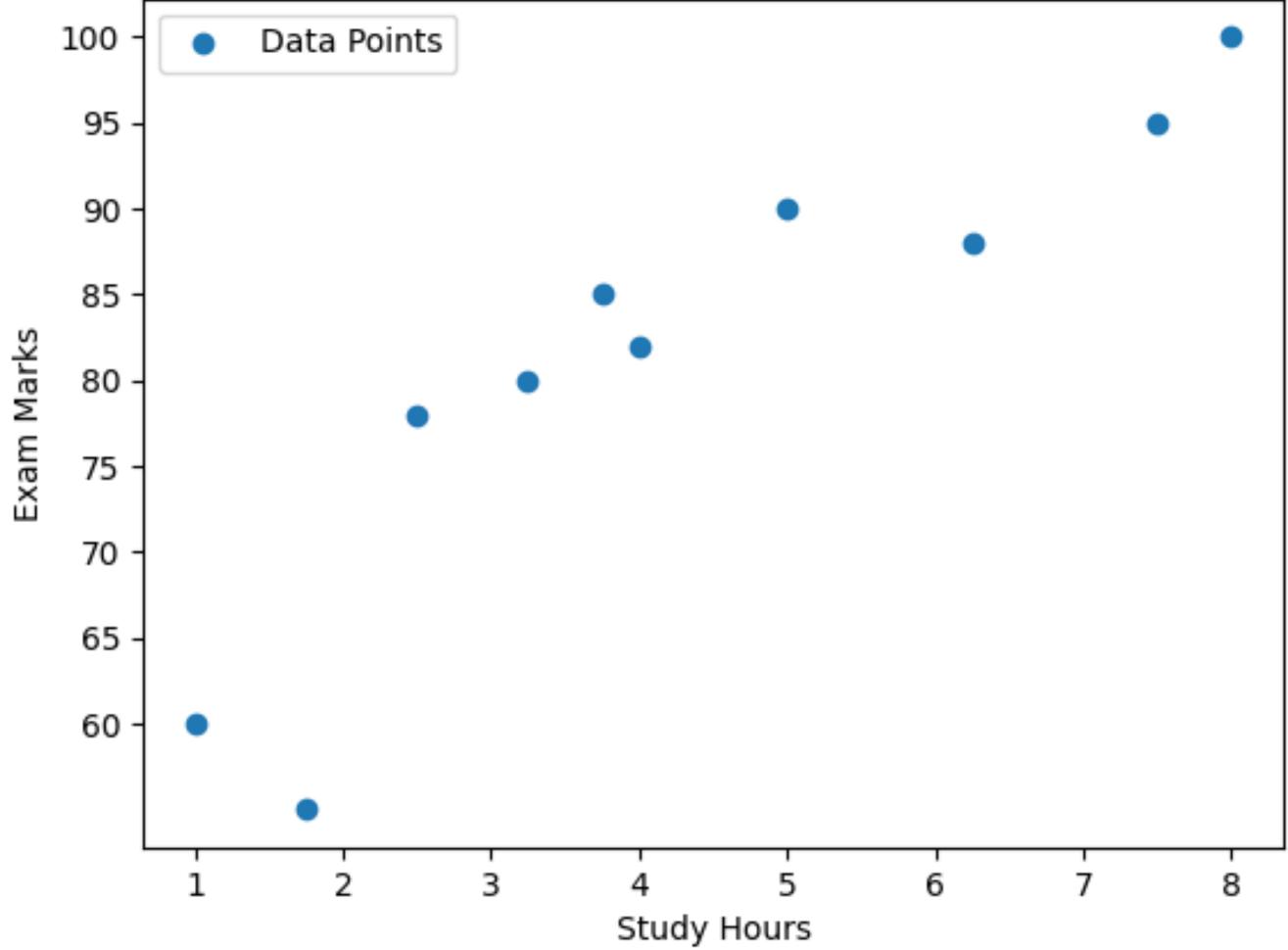


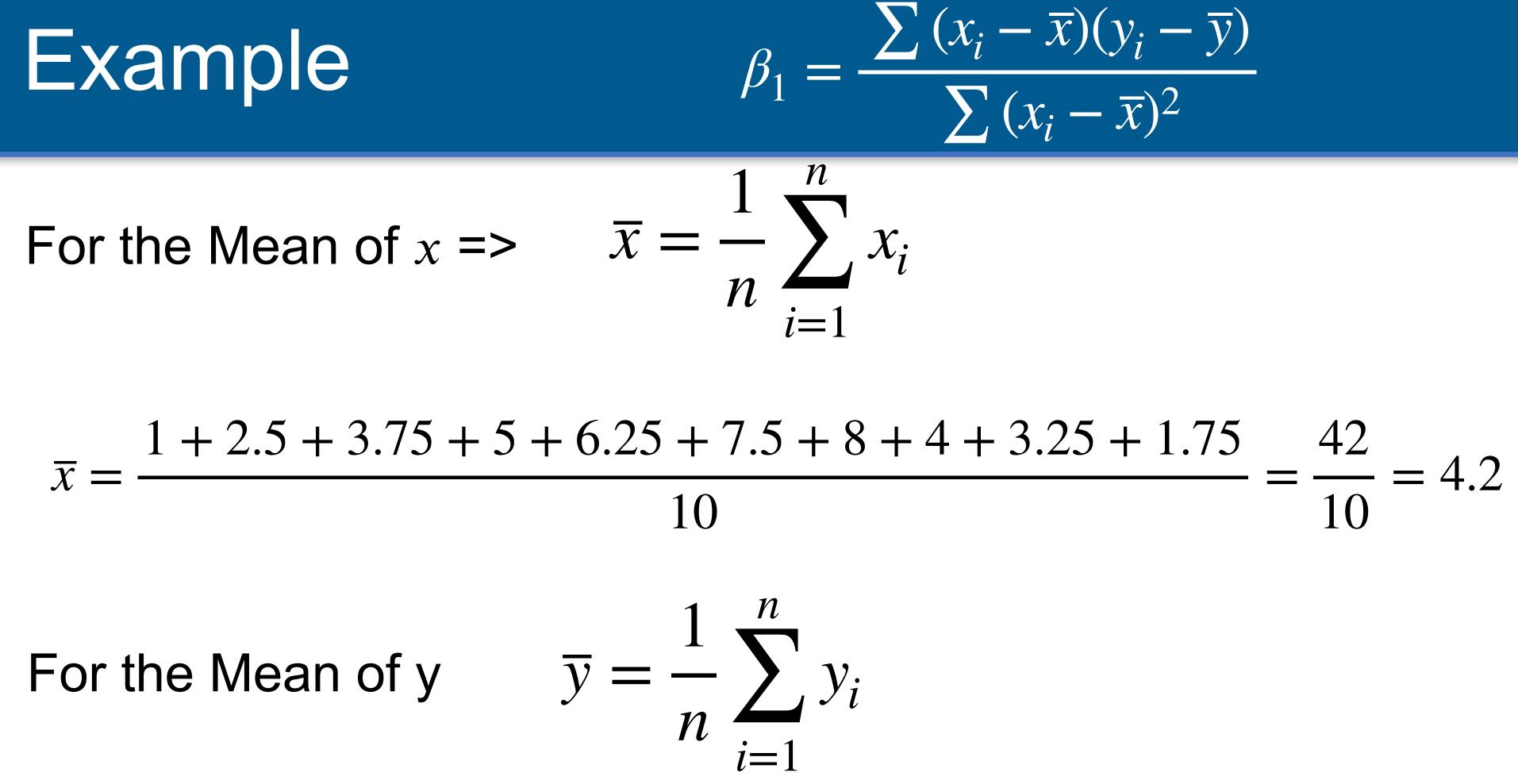
- The most common method to estimate the slope coefficient (β_1) is the least squares method.
- This method minimizes the sum of the squared differences (errors) between the observed values and the values predicted by the linear regression model.

$$\frac{x_i - \overline{x}}{\sum (x_i - \overline{x})^2}$$

Study Hours (x)	Exam Marks (y)
1.00	60
2.50	78
3.75	85
5.00	90
6.25	88
7.50	95
8.00	100
4.00	82
3.25	80
1.75	55

Study Hours vs. Exam Marks





60 + 78 + 85 + 90 + 88 + 95 + 100 + 82 + 80 + 5510

$$\frac{(x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2}$$

813 = 81.310

${\mathcal X}$	У	$(x_i - \overline{x})$	$(y_i - \overline{y})$	$(x_i - \overline{x})(y_i - \overline{y})$	$(x_i - \overline{x})$
1.00	60	-3.20	-21.30	68.16	10.24
2.50	78	-1.70	-3.30	5.61	2.89
3.75	85	-0.45	3.70	-1.665	0.2025
5.00	90	0.80	8.70	6.96	0.64
6.25	88	2.05	6.70	13.735	4.2025
7.50	95	3.30	13.70	45.21	10.89
8.00	100	3.80	18.70	71.06	14.44
4.00	82	-0.20	0.70	-0.14	0.04
3.25	80	-0.95	-1.30	1.235	0.9025
1.75	55	-2.45	-26.30	64.435	6.0025

 $\overline{x} = 4.2$

 $\bar{y} = 81.3$

$$\frac{(x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2}$$

 $\beta_1 = -$



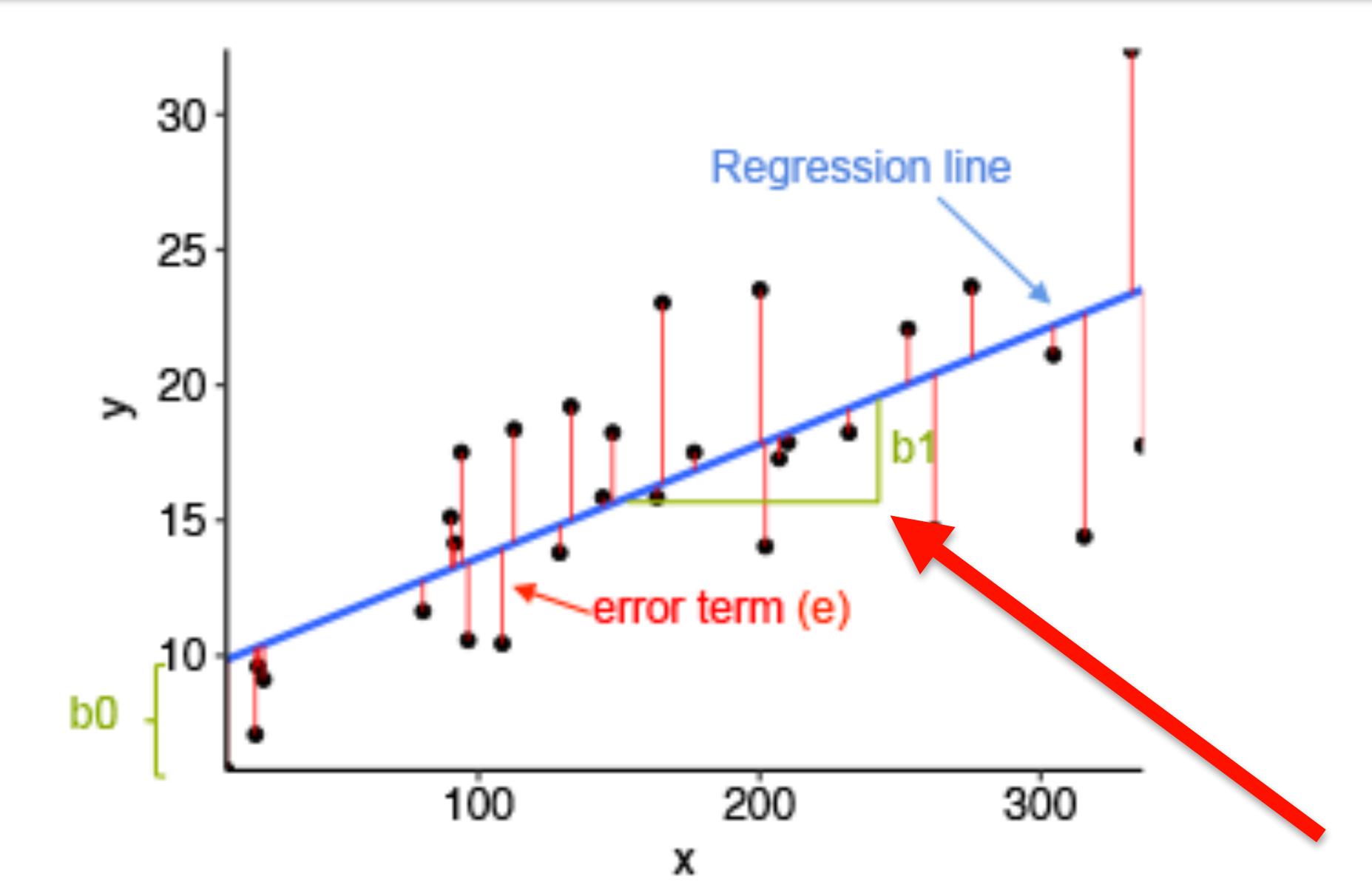
The total sum for the numerator in the slope calculation is:

$$\sum_{i=1}^{n} (x_i - \bar{x}) \times (y_i - \bar{y}) = 274.645$$

The total sum for the denominator in the slope calculation is: $\sum (x_i - \bar{x})^2 = 60.4475$ i=1

The slope coefficient (β_1) is calculated as:

$$\beta_1 = \frac{\sum (x_i - \bar{x}) \times (y_i - \bar{y})}{\sum (x_i - \bar{x})^2} = \frac{274.645}{60.4475}$$

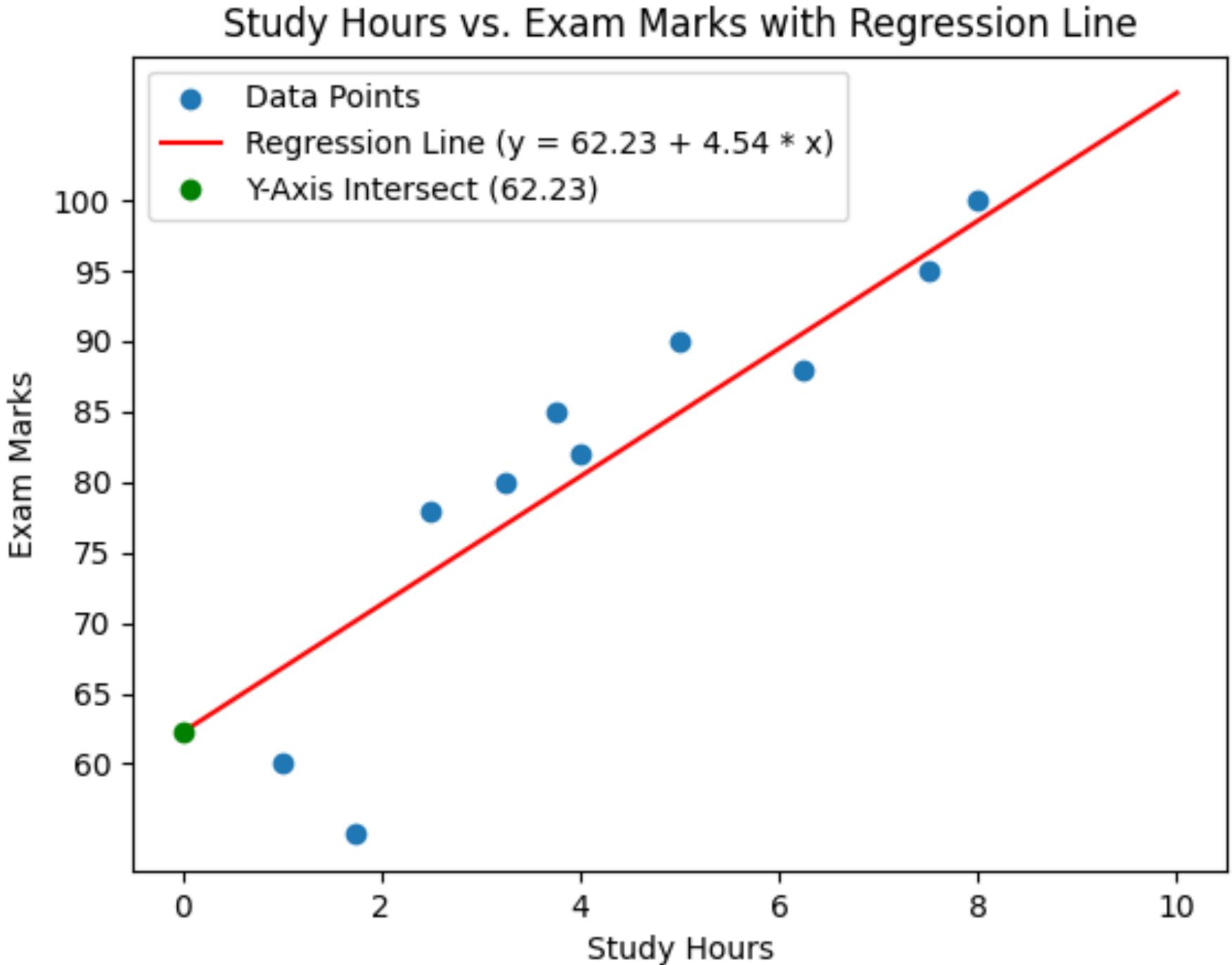


Calculate the Intercept β_0 $\hat{y}_i = \beta_0 + \beta_1 x_i$ $\overline{y} = \beta_0 + \beta_1 \overline{x}$

Given $\beta_1 = 4.54$, and $\overline{x} = 4.2$, $\overline{y} = 81.3$ the intercept (β_0) is calculated as :

$$\beta_0 = \overline{y} - \beta_1 \overline{x}$$
$$\beta_0 = 81.3 - 4.54 \times 4.2$$

Rounding to two decimal places, the intercept $\beta_0 = 62.23$



$$y = \beta_0 + \beta_1 x$$

 $\beta_0 = 62.23$ (the intercept)

$$\beta_1 = 4.54$$
 (the slope)

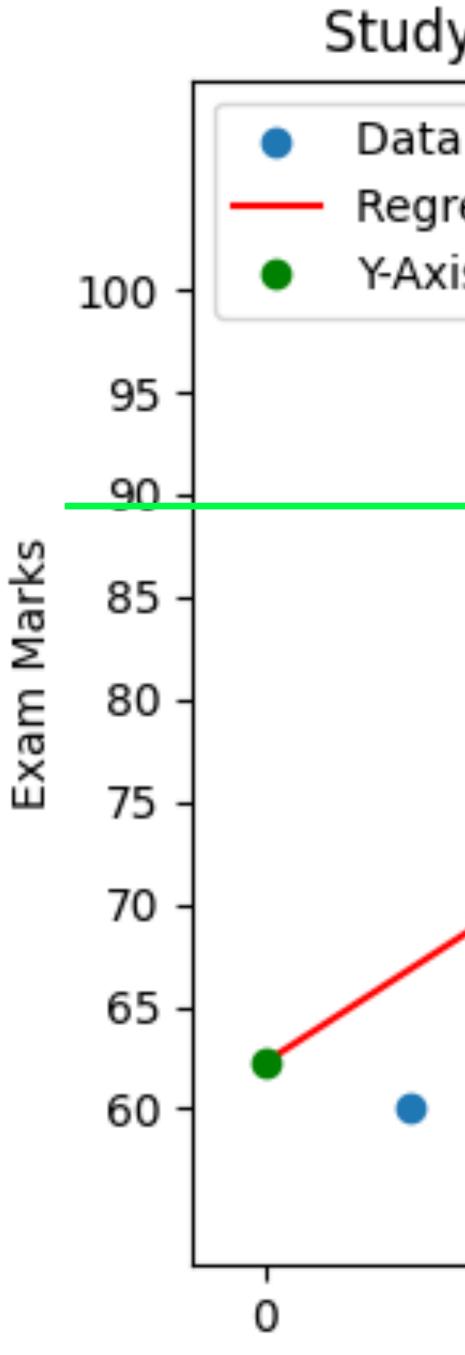
- x = 6 (hours studied)
- $y = 62.23 + (4.54 \times 6)$

y = 89.47

Thus, the expected exam mark for a student who studies for 6 hours is approximately 89.47

If a student studies for 6 hours, what would be their expected exam mark, based on a simple linear regression model with an intercept of 62.23 and a slope of 4.54?

$$x = 6 (hours studied)$$
$$y = 89.47$$



Study Hours vs. Exam Marks with Regression Line Data Points Regression Line (y = 62.23 + 4.54 * x) Y-Axis Intersect (62.23) 2 8 Study Hours

simple linear regression model with an intercept of 62.23 and a slope of 4.54?

$$y = \beta_0 + \beta_1 x$$

 $\beta_0 = 62.23$ (the intercept)

$$\beta_1 = 4.54 \ (the \ slope)$$

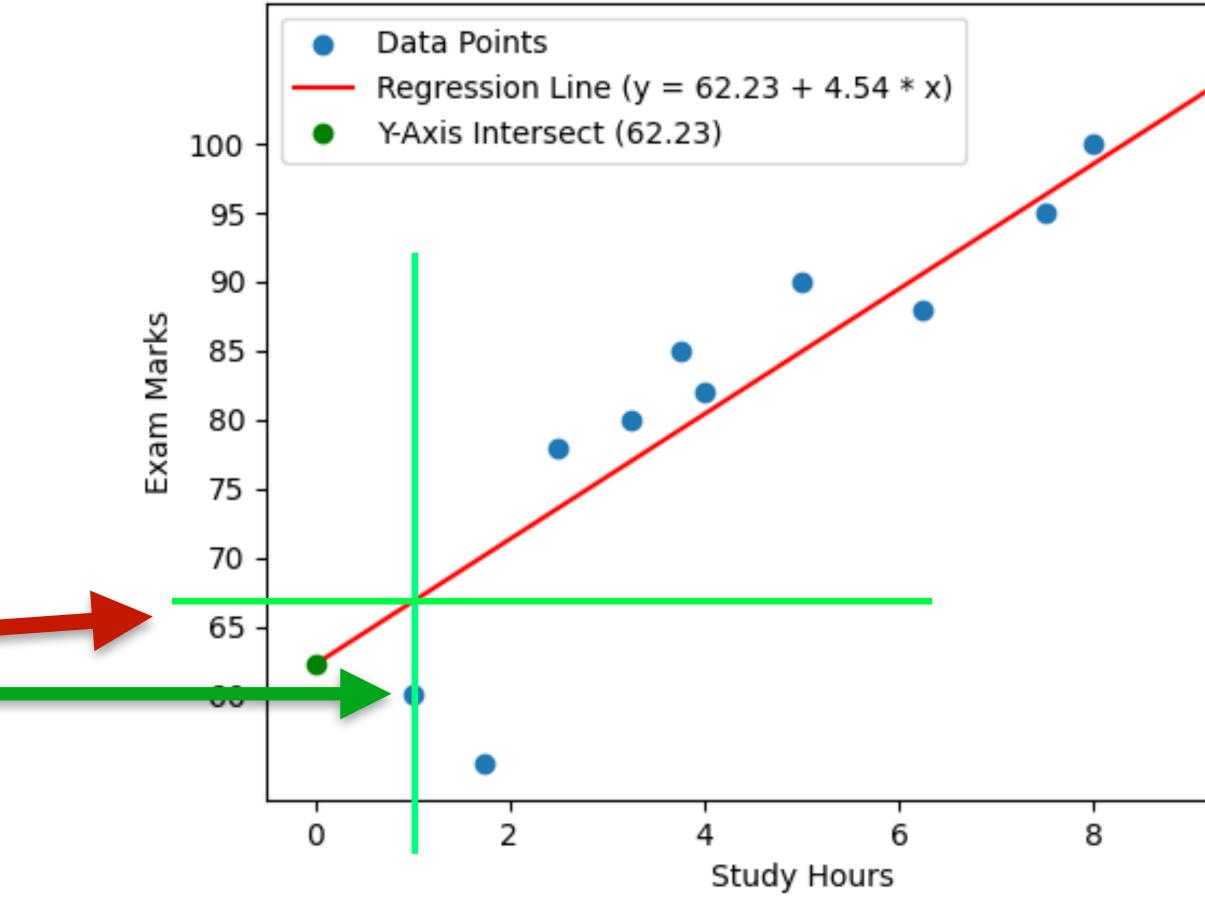
$$x = 1$$
 (hour studied)

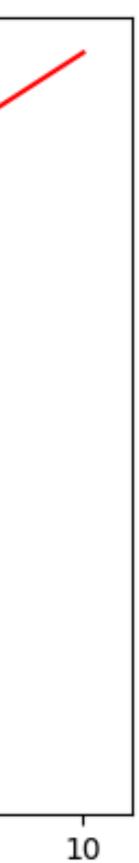
$$y = 62.23 + (4.54 \times 1)$$

y = 66.77

If a student studies for 1 hour, what would be their expected exam mark, based on a

Study Hours vs. Exam Marks with Regression Line





Evaluation Metrics for Regression

- Evaluating the performance of regression models is crucial for assessing their accuracy and effectiveness.
- Several evaluation metrics are commonly used to quantify the differences between predicted and actual values.
- Here are some key evaluation metrics for regression:
 - Mean Absolute Error (MAE)
 - Mean Squared Error (MSE)
 - Coefficient of Determination (R^2)

Mean Absolute Error (MAE)

values.

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$
$$MAE = \frac{1}{10} \sum_{i=1}^{10} |y_i - \hat{y}_i|$$

MAE = 4.854

MAE measures the average absolute difference between predicted and actual

${\mathcal X}$	У	ŷ	$ y - \hat{y} $
1.00	60	66.77	6.77
2.50	78	73.08	4.92
3.75	85	78.97	6.03
5.00	90	84.77	5.23
6.25	88	90.57	2.57
7.50	95	96.37	1.37
8.00	100	98.89	1.11
4.00	82	80.39	1.61
3.25	80	76.61	3.39
1.75	55	70.54	15.54

Mean Squared Error (MSE)

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
$$MSE = \frac{1}{10} \sum_{i=1}^{10} (y_i - \hat{y}_i)^2$$

MSE = 3.998

To compute MSE, square the differences between actual and predicted values

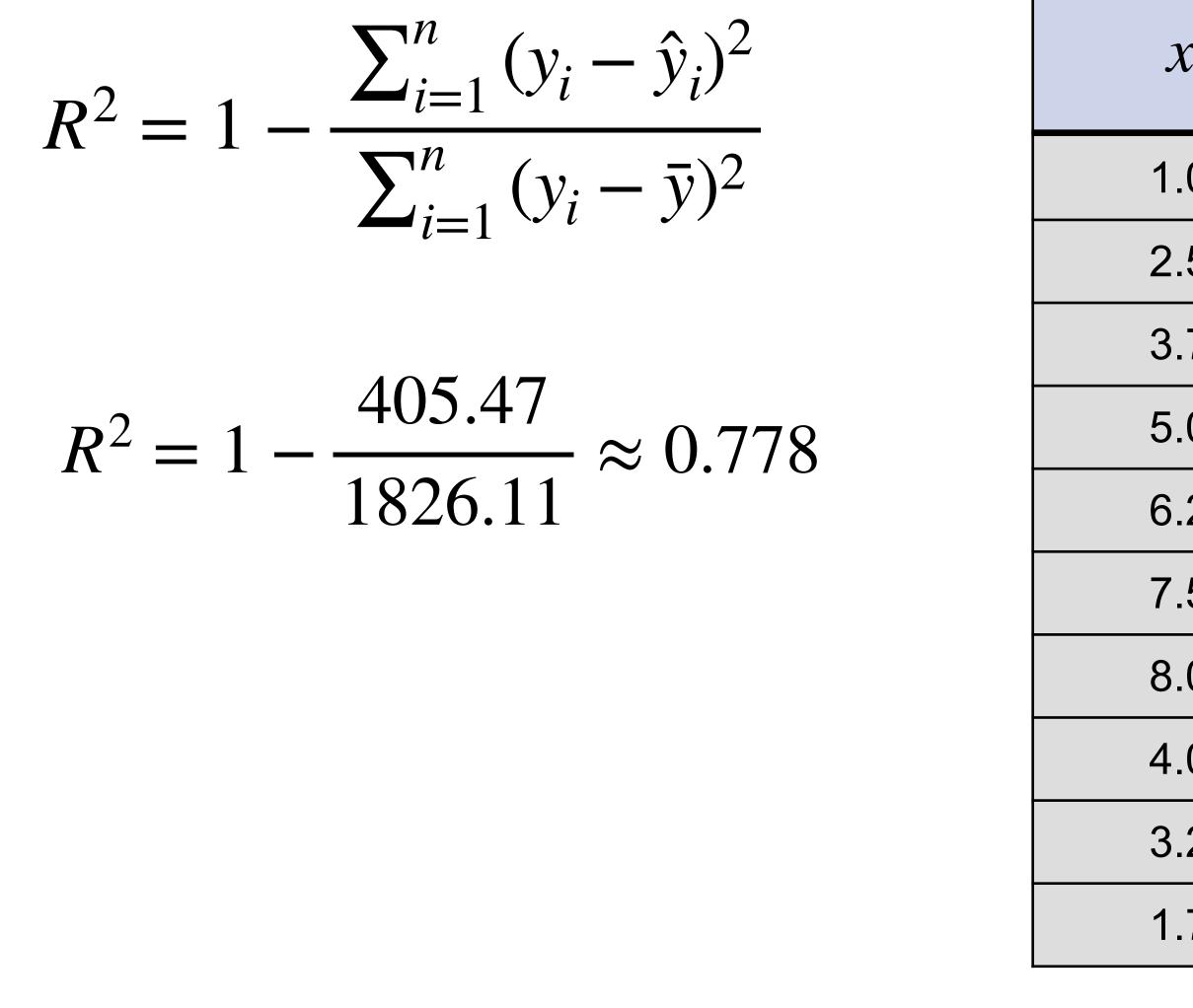
			·
${\mathcal X}$	у	ŷ	$(y - \hat{y})$
1.00	60	66.77	45.92
2.50	78	73.08	24.18
3.75	85	78.97	36.36
5.00	90	84.77	27.34
6.25	88	90.57	6.60
7.50	95	96.37	1.88
8.00	100	98.89	1.23
4.00	82	80.39	2.60
3.25	80	76.61	11.46
1.75	55	70.54	242.26

Coefficient of Determination (R^2)

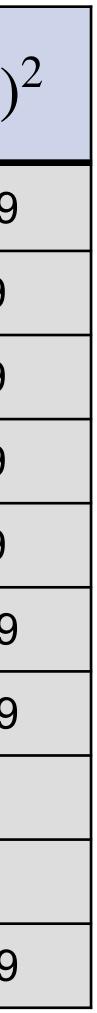
• To compute R^2 , find the explained variance (squared differences between predicted and actual values) and the total variance (squared differences between actual values and the mean), then compute the ratio:

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

Coefficient of Determination (R^2)



xy \hat{y} $(y - \hat{y})^2$ $(y - \bar{y})^2$.006066.7745.92454.892.507873.0824.1810.893.758578.9736.3613.693.009084.7727.3475.693.258890.576.6044.893.0010098.891.23348.493.008280.392.600.493.258076.6111.461.69.755570.54242.26687.69					
2.507873.0824.1810.89 3.75 85 78.97 36.36 13.69 5.00 90 84.77 27.34 75.69 5.25 88 90.57 6.60 44.89 7.50 95 96.37 1.88 187.69 3.00 100 98.89 1.23 348.49 0.00 82 80.39 2.60 0.49 8.25 80 76.61 11.46 1.69	X	У	ŷ	$(y - \hat{y})^2$	$(y-\overline{y})$
3.75 85 78.97 36.36 13.69 5.00 90 84.77 27.34 75.69 5.25 88 90.57 6.60 44.89 7.50 95 96.37 1.88 187.69 3.00 100 98.89 1.23 348.49 0.00 82 80.39 2.60 0.49 8.25 80 76.61 11.46 1.69	.00	60	66.77	45.92	454.89
3.0090 84.77 27.34 75.69 3.25 88 90.57 6.60 44.89 7.50 95 96.37 1.88 187.69 3.00 100 98.89 1.23 348.49 0.00 82 80.39 2.60 0.49 3.25 80 76.61 11.46 1.69	2.50	78	73.08	24.18	10.89
3.25 88 90.57 6.60 44.89 3.50 95 96.37 1.88 187.69 3.00 100 98.89 1.23 348.49 3.00 82 80.39 2.60 0.49 3.25 80 76.61 11.46 1.69	8.75	85	78.97	36.36	13.69
2.509596.371.88187.693.0010098.891.23348.49.008280.392.600.493.258076.6111.461.69	5.00	90	84.77	27.34	75.69
3.00 100 98.89 1.23 348.49 .00 82 80.39 2.60 0.49 3.25 80 76.61 11.46 1.69	5.25	88	90.57	6.60	44.89
.008280.392.600.49.258076.6111.461.69	.50	95	96.37	1.88	187.69
8.25 80 76.61 11.46 1.69	8.00	100	98.89	1.23	348.49
	.00	82	80.39	2.60	0.49
.75 55 70.54 242.26 687.69	3.25	80	76.61	11.46	1.69
	.75	55	70.54	242.26	687.69



MAE = 4.85

MSE = 3.998

 $R^2 = 0.778$

Mean Absolute Error (MAE) = 4.85

- The MAE value of 4.85 indicates that, on average, the predicted values deviate from the actual values by approximately 4.85 units (in the same scale as the target variable).
- <u>A lower MAE value is desirable</u>, as it means the predictions are closer to the actual values.

MAE = 4.85 MSE = 3.998 $R^2 = 0.778$

Mean Squared Error (MSE) = 3.998

- The MSE value of 3.998 represents the average squared difference between the predicted and actual values.
- <u>A lower MSE value is preferred</u>, as it indicates smaller differences between predictions and actual values.

MAE = 4.85 MSE = 3.998 $R^2 = 0.778$

Coefficient of Determination (R^2) = 0.778

- The R^2 value of 0.778 means that approximately 77.8% of the variation in the target variable is explained by the linear regression model.
- R^2 ranges from 0 to 1, with <u>higher values indicating a better fit</u> of the model to the data.
- An R^2 value of 0.778 suggests a reasonably good fit, but there is still room for improvement in the model's predictive ability.

MAE = 4.85 MSE = 3.998 $R^2 = 0.778$

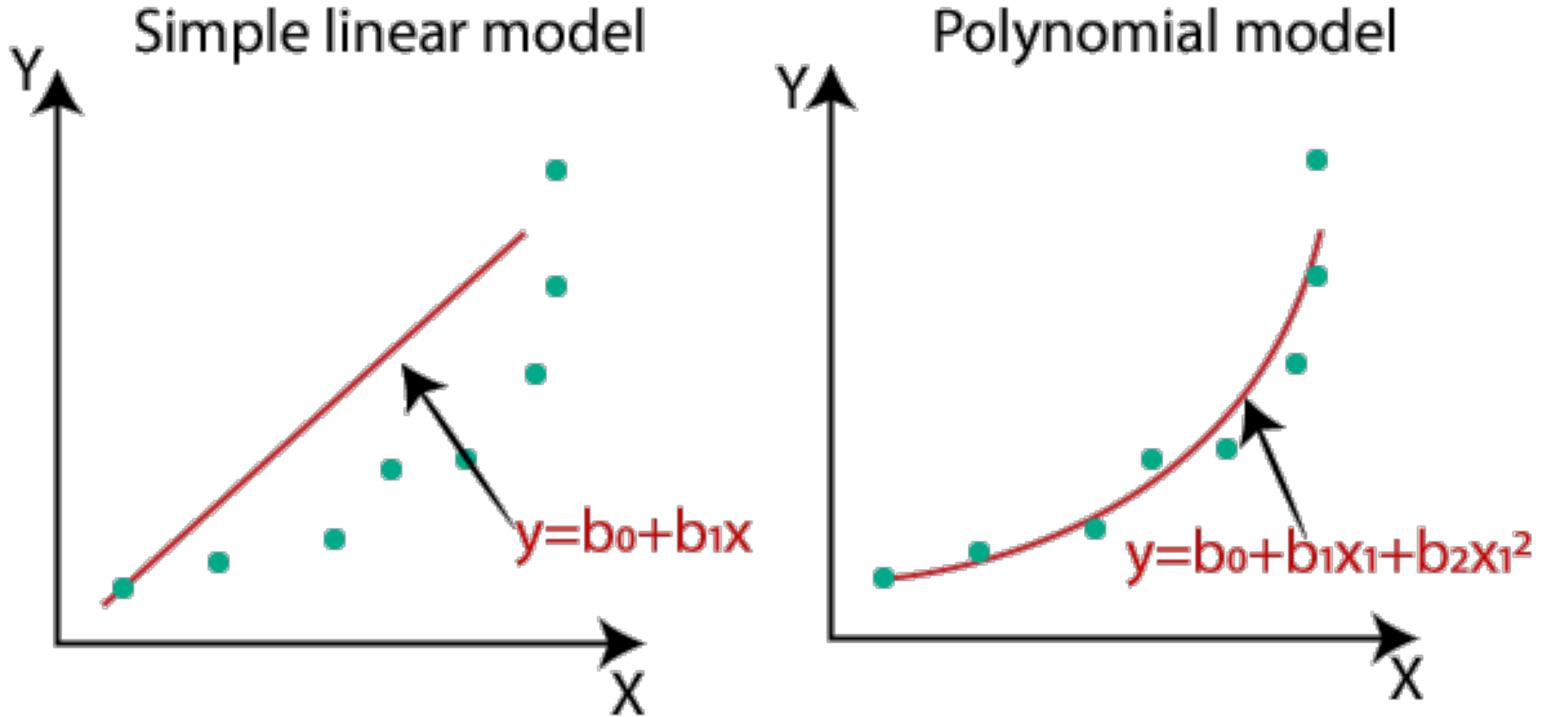
between the independent (x) variable(s) and the dependent variable (y) is modeled as an nth-degree polynomial.

and providing a flexible way to fit nonlinear data.

$$Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \beta_3 X^3 + \dots + \beta_n X^n + \epsilon$$

Polynomial Regression is a type of regression analysis where the relationship

It is an extension of linear regression, allowing for more complex relationships



Polynomial model

$$Y = \beta_0 + \beta_1 X + \beta_2 X^2 - \beta_1 X + \beta_1 X + \beta_2 X^2 - \beta_1 X + \beta_2 X^2 - \beta_1 X + \beta_1 X + \beta_2 X^2 - \beta_1 X + \beta_1 X + \beta_2 X^2 - \beta_1 X + \beta_1 X + \beta_2 X^2 - \beta_1 X + \beta_1 X + \beta_2 X^2 - \beta_1 X + \beta_1 X + \beta_2 X^2 - \beta_1 X + \beta_$$

Where

- y: Dependent variable (what we're trying to predict)
- x: Independent variable (what we're basing our prediction on)
- β_0 (y-intercept): This is the constant term that indicates the value of y y when x=0. It represents the starting point of the curve on the y-axis.
- β_1 to β_n : Coefficients to be estimated from the data
- n: Degree of the polynomial (how many times x is multiplied by itself)

 $+\beta_{3}X^{3}+\ldots+\beta_{n}X^{n}+\epsilon$

Advantages:

Flexibility: Polynomial regression can model a wide range of non-linear relationships.

fitting a straight line to the data, polynomial regression fits a curved line.

Disadvantages:

Overfitting: Higher-degree polynomials can fit the training data too closely, leading to poor generalization to new data. Numerical Instability: Using high-degree polynomials can make things unstable, causing the curve to wobble a lot or create very large values.

- Interpretability: While more complex than linear regression, however, instead of

