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• Estimating the Slop Coefficient 
• Evaluate metrics for regression 

• MAE 
• MSE 
• R2 

• Polynomial Regression

Outline



Estimating the Slope Coefficient ( )β1

• The equation for estimating the slope coefficient  is 

 

• The most common method to estimate the slope coefficient ( ) is the 
least squares method. 

• This method minimizes the sum of the squared differences (errors) 
between the observed values and the values predicted by the linear 
regression model.

β1

β1 =
∑ (xi − x)(yi − y)

∑ (xi − x)2

β1



Example

Study Hours (x) Exam Marks (y)

1.00 60
2.50 78
3.75 85
5.00 90
6.25 88
7.50 95
8.00 100
4.00 82
3.25 80
1.75 55



Example β1 =
∑ (xi − x)(yi − y)

∑ (xi − x)2

For the Mean of 𝑥 => x =
1
n

n

∑
i=1

xi

x =
1 + 2.5 + 3.75 + 5 + 6.25 + 7.5 + 8 + 4 + 3.25 + 1.75

10
=

42
10

= 4.2

For the Mean of y y =
1
n

n

∑
i=1

yi

y =
60 + 78 + 85 + 90 + 88 + 95 + 100 + 82 + 80 + 55

10
=

813
10

= 81.3



Example

1.00 60 -3.20 -21.30 68.16 10.24

2.50 78 -1.70 -3.30 5.61 2.89

3.75 85 -0.45 3.70 -1.665 0.2025

5.00 90 0.80 8.70 6.96 0.64

6.25 88 2.05 6.70 13.735 4.2025

7.50 95 3.30 13.70 45.21 10.89

8.00 100 3.80 18.70 71.06 14.44

4.00 82 -0.20 0.70 -0.14 0.04

3.25 80 -0.95 -1.30 1.235 0.9025

1.75 55 -2.45 -26.30 64.435 6.0025

(xi − x) (yi − y)

β1 =
∑ (xi − x)(yi − y)

∑ (xi − x)2

(xi − x)2(xi − x)(yi − y)x yx = 4.2

y = 81.3



Example

n

∑
i=1

(xi − x) × (yi − y) = 274.645

n

∑
i=1

(xi − x)2 = 60.4475

β1 =
∑ (xi − x) × (yi − y)

∑ (xi − x)2
=

274.645
60.4475

≈ 4.54

The total sum for the numerator in the slope calculation is:

The total sum for the denominator in the slope calculation is:

The slope coefficient (      ) is calculated as:β1



Example



Example
Calculate the Intercept

y = β0 + β1x
Given β1 = 4.54 , and x = 4.2, y = 81.3 the intercept (β0) is calculated as :

̂yi = β0 + β1xi

β0 = y − β1x
β0 = 81.3 − 4.54 × 4.2

β0 = 62.23Rounding to two decimal places, the intercept

β0



Example



Example
If a student studies for 6 hours, what would be their expected exam mark, based on 
a simple linear regression model with an intercept of 62.23 and a slope of 4.54?

y = β0 + β1x
β0 = 62.23 (the intercept)
β1 = 4.54 (the slope)
x = 6 (hours studied)

y = 62.23 + (4.54 × 6)
y = 89.47

Thus, the expected exam mark for a student who studies for 6 hours is approximately 89.47



Example

y = 89.47
x = 6 (hours studied)



Example

If a student studies for 1 hour, what would be their expected exam mark, based on a 
simple linear regression model with an intercept of 62.23 and a slope of 4.54?

y = β0 + β1x
β0 = 62.23 (the intercept)

β1 = 4.54 (the slope)
x = 1 (hour studied)

y = 62.23 + (4.54 × 1)
y = 66.77



Evaluation Metrics for Regression

• Evaluating the performance of regression models is crucial for assessing their 

accuracy and effectiveness.  

• Several evaluation metrics are commonly used to quantify the differences 

between predicted and actual values.  

• Here are some key evaluation metrics for regression: 

• Mean Absolute Error (MAE) 

• Mean Squared Error (MSE) 

• Coefficient of Determination ( )R2



Mean Absolute Error (MAE)
• MAE measures the average absolute difference between predicted and actual 

values.

MAE =
1
n

n

∑
i=1

|yi − ̂yi| 1.00 60 66.77 6.77

2.50 78 73.08 4.92

3.75 85 78.97 6.03

5.00 90 84.77 5.23

6.25 88 90.57 2.57

7.50 95 96.37 1.37

8.00 100 98.89 1.11

4.00 82 80.39 1.61

3.25 80 76.61 3.39

1.75 55 70.54 15.54

|y − ̂y|

MAE =
1
10

10

∑
i=1

yi − ̂yi

x y ̂y

MAE = 4.854



Mean Squared Error (MSE)
• To compute MSE, square the differences between actual and predicted values

MSE =
1
n

n

∑
i=1

(yi − ̂yi)2 1.00 60 66.77 45.92

2.50 78 73.08 24.18

3.75 85 78.97 36.36

5.00 90 84.77 27.34

6.25 88 90.57 6.60

7.50 95 96.37 1.88

8.00 100 98.89 1.23

4.00 82 80.39 2.60

3.25 80 76.61 11.46

1.75 55 70.54 242.26

(y − ̂y)2

MSE =
1
10

10

∑
i=1

(yi − ̂yi)2

x y ̂y

MSE = 3.998



Coefficient of Determination ( )R2

• To compute , find the explained variance (squared differences between 

predicted and actual values) and the total variance (squared differences between 

actual values and the mean), then compute the ratio:

R2

R2 = 1 −
∑n

i=1 (yi − ̂yi)2

∑n
i=1 (yi − ȳ)2



Coefficient of Determination ( )R2

1.00 60 66.77 45.92 454.89

2.50 78 73.08 24.18 10.89

3.75 85 78.97 36.36 13.69

5.00 90 84.77 27.34 75.69

6.25 88 90.57 6.60 44.89

7.50 95 96.37 1.88 187.69

8.00 100 98.89 1.23 348.49

4.00 82 80.39 2.60 0.49

3.25 80 76.61 11.46 1.69

1.75 55 70.54 242.26 687.69

(y − ̂y)2x y ̂y
R2 = 1 −

∑n
i=1 (yi − ̂yi)2

∑n
i=1 (yi − ȳ)2

(y − y)2

R2 = 1 −
405.47
1826.11

≈ 0.778



What does it mean?

MAE = 4.85

MSE = 3.998

R2 = 0.778



What does it mean?

MAE = 4.85 MSE = 3.998 R2 = 0.778
Mean Absolute Error (MAE) = 4.85 
• The MAE value of 4.85 indicates that, on average, the predicted values deviate 

from the actual values by approximately 4.85 units (in the same scale as the 
target variable). 

• A lower MAE value is desirable, as it means the predictions are closer to the 
actual values. 



What does it mean?

MAE = 4.85 MSE = 3.998 R2 = 0.778
Mean Squared Error (MSE) = 3.998 
• The MSE value of 3.998 represents the average squared difference between 

the predicted and actual values. 
• A lower MSE value is preferred, as it indicates smaller differences between 

predictions and actual values. 



What does it mean?

MAE = 4.85 MSE = 3.998 R2 = 0.778
Coefficient of Determination ( ) = 0.778 
• The  value of 0.778 means that approximately 77.8% of the variation in the 

target variable is explained by the linear regression model. 
•  ranges from 0 to 1, with higher values indicating a better fit of the model to 

the data. 
• An  value of 0.778 suggests a reasonably good fit, but there is still room for 

improvement in the model's predictive ability. 

R2

R2

R2

R2



Polynomial Regression

Polynomial Regression is a type of regression analysis where the relationship 
between the independent (x) variable(s) and the dependent variable (y) is 
modeled as an nth-degree polynomial. 

It is an extension of linear regression, allowing for more complex relationships 
and providing a flexible way to fit nonlinear data.

Y = β0 + β1X + β2X2 + β3X3 + … + βnXn + ϵ



Polynomial Regression



Polynomial Regression

Where  
• y: Dependent variable (what we're trying to predict)  
• x: Independent variable (what we're basing our prediction on)  
•  (y-intercept): This is the constant term that indicates the value of 𝑦 y when 

x=0. It represents the starting point of the curve on the y-axis. 
•  to : Coefficients to be estimated from the data  
• n: Degree of the polynomial (how many times x is multiplied by itself)

β0

β1 βn

Y = β0 + β1X + β2X2 + β3X3 + … + βnXn + ϵ



Polynomial Regression

Advantages: 
Flexibility: Polynomial regression can model a wide range of non-linear 
relationships.  
Interpretability: While more complex than linear regression, however, instead of 
fitting a straight line to the data, polynomial regression fits a curved line. 

Disadvantages: 
Overfitting: Higher-degree polynomials can fit the training data too closely, 
leading to poor generalization to new data.  
Numerical Instability: Using high-degree polynomials can make things 
unstable, causing the curve to wobble a lot or create very large values.




