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Lecture — 7

Application of classical control theory

DYNAMIC STABILITY AND RESPONSE BEHAVIOR OF A SPRING-
MASS-DAMPER SYSTEM AND ITS STABILITY CRITERIA

Figure 5.3 shows an example of a mechanical spring—mass—damper system. The position
of the mass, x(t), is considered to be the "output’ of the system. The externally applied driving force,
f(t), is considered to be the ’input’ to the system.
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Figure 5.3 Example of a Spring—Mass—Damper System

The equation of motion for the system of Figure 5.3 can be written as follows:
mx + cx + kx = f(t) (5.3)

It is useful to cast this equation in terms of accelerations rather than forces. This is done by
dividing by the mass, m:

The following two quantities will now be defined:

the undamped natural frequency : Op =y %
the damping ratio: = ..__F;
2vkm

X + 2Cwpx + wr.?x = % = f,(t)

Applying the Laplace transform for non—zero initial conditions yields:

If the initial conditions are all equal to zero, it is possible to solve Eqn (5.9) for the ratio of
the output Laplace transform, x(s), to the input Laplace transform, f,(s):

Xx(s) _ (s) = 1
f,(s) 782 4 2Twes + w,2 (5.11)

This ratio is referred to as the open loop transfer function of the spring-mass—damper system.

Assume that the forcing function f|(t) is a unit s_tep as illustrated in Figure 5.4. The
Laplace transform of the unit step is:

fiis) =1



T fi(t) =0 for t <0 and f,(t) = 1.0 for t =0
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Figure 5.4 ical ntation of a Unit Step Forcing Function
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The output of the system, in the s—domain, can now be written as:

1 1

X{(g) = = S —
®) s (52 + 2Cw,s + mnz)
To find the corresponding time domain response, x(t}, it is necessary to find the inverse
Laplace transform of x(s). This is done with the method of partial fraction expansion. How this is
done is explained in detail in Ref. (5.2). The usual procedure is to first find the roots of the character-
istics equation:
s? + 2Lwps + a2 = 0 (5.14)

(5.13)

The roots of this characteristic equation will be called &, and k,. These roots are some-

times referred to as the "eigen—values’ of the system. It is now possible to write:

s? + 2Lwps + wpZ = (s = A(s — Ay (5.15)

The system output in the s—domain can now be written as:

=11  J_A, B . C
X(S)_s((ﬂ—}n)(s—lz]) 5+5_?~1 s—h, (3.16)

The constants A, B and C may be determined with the theorem of residues (See Ref. 5.5).
It is found that:

= 1 — 1 - 1
A== B=crpn—"—®w— C=rn———w— 5.17)

It is now possible to rewrite Eqn (5.16) as:

| 1 1
;) = 7\1?-2 hMh, =) ((h—R)
x(s) S + = + o

(5.18)

The roots of Eqn (5.14), A, and M, , can be either both real or both complex. Both cases

will be considered.

Case 1: Both roots of Eqn (5.14) are real

The inverse Laplace transform of the s—domain functions in Eqn (5.18) can be found directly
from Table C| in Appendix C. Doing so results in the following time-domain solution for x(t):

=1 l Mt l Aot
)=+ 5 Ll e’z
X My hy(hy — i’\q)e ho(hg — hy) (5.19



Three possibilities present themselves:

1) If both roots, J\l and h,, are positive, A, > 0 and h, > 0, itis seen that x(t) will di-
verge to infinity. Such a system is said to be divergent. Note that if only one root is positive the
system will still be divergent.

2) If both roots, A, and h,, are negative, A, < 0 and A, < 0, it is seen that x(t) will

converge toward the value x(t) = 1/(hA5) . Such a system is said to be convergent.

3) If bothroots, h; and A,,areequaltozero, h; = 0 and A, = 0, itis seen that x(t) be-
comes undetermined. This can be shown by application of I'Hopital’s Theorem. Such a system is
said to be neutrally stable. Note that if only one root is zero, the system is still neutrally stable.

Figure 5.5 shows the various time—domain responses for the case of all-zero, all-negative
and all-positive real characteristic equation roots.
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Figure 5.5 Time Domain Responses of a Spring—Mass—Damper System
with Real Characteristic Equation Roots

Case 2: Both roots of Eqn (5.14) are complex

In this case, the complex roots must be each others conjugate:

Ay =n+jo Ay =n—jw (5.20)

By substituting these forms of the roots into Eqn (5.19) it is found that:

x(t) = L 4 _e@" _ e@-jon

5.21
2+ w2 (n+jo)2jo (10— jw)2jo 6.21)

With the help of De Moivre’s Theorem (See Reference 5.5, page 467) this in turn can be writ-
ten as follows:

X(I) _ m{‘l _ i:nl((:,{)s(l.)t - isinwt)} (522)

Clearly the system response in this case is oscillatory in nature.

Again, three possibilities present themselves:

1) Itis seen from Eqn (5.22) that as long as the real part of the complex roots, n<Q, the oscilla-
tory terms will subside and the system will reach a final position given by:

X(t = =) = 1 -1 (5.23)



Such a system is called oscillatory convergent (oscillatory stable).
2) Similarly it is seen from Eqn (5.22) that when the real part of the complex roots is positive,

the amplitudes of the oscillations will tend to diverge. Such a system is called oscillatory divergent
(oscillatory unstable).

3) If the real part of the complex roots is zero, the system will oscillate at a constant ampli-
tude. Such a system is said to be neutrally stable.

Figure 5.6 shows examples of time-domain responses for the case of complex characteristic
equation roots.

The following properties of the characteristic equation roots and their characteristics in the
s-plane are to be noted. The reader is asked to refer to Figure 5.7.

First, the product of the characteristic equation roots is observed 1o be equal to the square
of the undamped natural frequency as defined in Eqn (5.5):

Ay = 02 + 0 = @y (5.24)

Notice that in the s—plane (see Figure 5.7) the undamped natural frequency is equal to the
distance of each complex characteristic equation root (also called a pole) to the origin.
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o =w,/1 - (5.26)

From this result it can be observed that when the damping ratio becomes zero {this occurs
when ¢=0 in Eqn (5.3)} the frequency of oscillation equals the undamped natural frequency:

w=0,=,/k (for ¢ = 0) (5.27)
The spring-mass—damper system output, x(t), as expressed by Eqn (5.22), can be cast in a

format which reflects the system damping ratio and undamped natural frequency. The reader is
asked to show that the result of doing this is as follows:

x(t) = anz{l - e‘m'[cos(mn J1 =020 + ’%tzsm(w" J1 - 221)]} =

v

=_1 {1 —%sm((mn‘;l -0+ w)} with : (5.28)

Y = arcsin,/1 — 2

From the presentations so far, it is evident that the stability character of the response of a
system such as shown in Figure (5.3) is determined entirely by:

a) the type of roots of the characteristic equation of that system

b) the sign of the real part of the roots of the characteristic equation
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2 _LONGITUDINAL EQUATIONS AND TRANSFER FUNCTIONS

The small perturbation, longitudinal equations of motion of the airplane are represented by
Eqns (5.1). Two observations are in order:
First, by using the substitution q = 8 and w = U, the equations can be cast in terms of

the following variables: speed, u, angle — of — attack a , and pitch — attitude angle, 8

Second, the pitching moment of inertia, 1,y ,is normally computed in a somewhat arbitrarily

selected body-fixed axis system. Because the equations of motion are written in the stability axis
system, lyy , would have to be computed also in that system. However, because the stability axis

system was obtained from any body-fixed axis system by rotation about the Y-axis, Iy remains

the same. It will be seen in Section 5.3 that this will not be the case for the lateral-directional inertias.
Equations (5.1a-c) will now be rewritten in two steps:

Step 1: To obtain better insight into the physical characteristics of Equations (5.1) it is cus-
tomary to divide both sides of the lift and drag force equations by the mass, m, and to divide both
sides of the pitching moment equation by the pitching moment of inertia, Lyy . Asaresult all terms

in the corresponding equations have the physical unit of linear or angular acceleration,
Step 2: To obtain better insight into the relative importance of the aerodynamic forces and

moments, the so-called dimensional stability derivatives of Table 5.1 are introduced. How these
derivatives come about is illustrated with one example. Consider the Cm, term in Eqn (5.1¢). This

term will be re—written as follows:

q;5¢Cp, o 4, S¢Cn_
——=Ma, where: M = —._° (5.29)
Lyy a . Lyy

The newly defined dimensional stability derivative, M, , has the following very important

physical meaning: it represents the pitch angular acceleration imparted to the airplane s a result of
aunitchange inangle of attack. This physical meaning can be generalized to apply to all dimensional
stability derivatives of Table 5.1 by using the following definition:

Definition:  Each dimensional derivative represents either the linear or angular accelera-
tion imparted to the airplane as a result of a unit change in its associated motion or control variable.

The numerical magnitudes of these dimensional derivatives therefore give numerical clues
about their relative importance. Their use in the equations of motion (5.1a-c) also results in a much
"cleaner’ look for these equations. The resulting equations are presented as Eqns (5.30) in Table 5.2,



Table 5.1 Definition of Longitudinal, Dimensional Stability Derivatives

X - 0;3Cp, +2Cp) ft/sec?
! mU, ft/sec
B 0;5(Cr,, + 2':"Txlj' ft/sec?
Lo mU, ft/sec
—4;3{Cp, — ) fit/sec?
a m rad
X = - qlﬁcﬂh ft /sec?
B, m rad
7 =_ qpCy, +2C) fit/sect
’ mU, ft/sec
“@SC, +Cp) fysect
a m rad
7 ~ @SEC ft/sec?
a 2mU, rad /sec
P qy8eC ft /sec?
A 2ml, rad,/sec
7 = _ﬁlﬁch ft /sect
b m rad

M, = 0,5¢(Cm, + 2Cy,) rad/sec?
lyyU, ft/sec
_ ;5 Crny, + Wmy ) rad/sec?
T Iy, ft/sec
_ §5¢Cm, rad/sec?
n Iyy rad
qISECFﬂT raﬁ;’ﬁe,cg
MT - 1
& yy rad
— o=l
_ g,5¢ C’"‘q rad/sec?
a 21,,U, rad/sec
_ g,5¢°Cpy, rad [sec?
21,,U, rad,/sec
_ 4;S€Ca, rad /sec?
L T rad




Table 5.2 Development of the Perturbed Longitudinal Equations of Motion

with Dimensional Stability Derivatives in Matrix Format
Ui = U\B = = gBsin®, + Zyu + Zoot + Z,00 + 2,0 + Z,Be (5.30b)
B = My + Mpu + Mgt + Mpa + Mga + M + M, 8, (5.30¢)

Laplace transforming Eqns {5.30) for zero initial conditions:

(s — Xy — Xg Juis) = Xaais) geost B(s) = X Bels)
(5.31a)

- Zuis) s(U) = Zp) = Zafuls) (= (Zg + Upls + gsin®[0(s) = Z, d(s)
(5.31b)

= My + Mpu(s) = [Mgs + Mq + Mg Ja(s)  (s? = Mgs)fi(s) = M, 8u(s)
{5.31¢)

Writing Eqns (5.31) in matrix and transfer function format:
Transfer Function Matrix

PR

—
(s = Xy = Xq1) — Xa geost, [ u(s) (X, )
Y ) )
. . ais) f 7
— zu |:!'|:Ut - zﬂ} - Eu] i_ I:Eq + .[..I-I]H. + g}ﬂnﬂ]} -l: m > = o E'r b
8 ||y
=My Mp) - (Ms+ Mo + My, (5 = M) XO) B G
- System Matrix -

Control Power Matrix (5.32)




Equations (5.30) are Laplace transformed for zero initial conditions. The new variables
are: u(s), afs) and B{s) respectively, while ﬁr_{:-.] 15 the Laplace transformed elevator input, The

result is Eqns (5.31). Next, equations (5.3 1a-c) are divided by d.(s} . This gives rise to the so—
called open—leop airplane transfer functions: u(s)/8.(s). w(s)/8.(s) and O(s)/8.45) . The open—

loop transfer functions can now be thought of as the new ‘variables”. By casting the equations in
amalrix format the result is Eqns (5.32) which are also shown in Table 5.2. The airplane open-loop
ransfer functions can be determined with matrix algebra. Each transfer function is then expressed
as a ratio of two determinants. The resulting determinant ratios are shown in Table 5.3 as Equations
(5.33), {%.36} and {5.38) respectively.

Note, that the speed—to—elevator transfer function, u(s)/B.(s) , 0f Eqn (5.33) can be written

as the following ratio of polynomials in the independent Laplace variable, s:

At + Bys? + Cs + D,
Bcl8) Ast+Bs'+Cs2+Ds+E
1 | | | 1 |

(5.40)
Similarly, the angle—of-attack-to—elevator transfer function, ais)/8.(s) , of Egn (5.36) can
be expressed as:

.l'ﬁlcgElﬁ + BQEE +nc,uﬂ- + D.ﬁ
Bels) b AT+ BT+ Cst+ Ds + E,

(5.41)

Finally, the pitch-attitude—to—elevator transfer function, B(s)/8.5) , of Egn (5.38) can be

writlten as:
&) _ o - As” + By * Co (5.42)
S:5) D, Ast+ B+ Cs?+Dis+E, '

[t is seen that all ransfer functions have the same denominator. When this denominator is
set equal 1o zero the resulting equation is called the characteristics equation:

As*+Bs+Cs2+Ds+E =0 (5.43)

The roots of this characteristic equation determine the dynamic stability character of the air-
plane. These roots and how they are affected by flight condition, by airplane mass, by airplane mass
distribution (c.g. location and inertias), by airplane geometry and by the airplane aerodynamic char-
acteristics will be discussed in Sub—section 5.2.2 - 5.2.6.

It 15 also seen from Eqns (5.400-(5.42) that the numerators are all different. The numerator
polynomials affect the magnitude of the response of an airplane to a control surface input, Howev-
er, ONLY the denominators affect the dynamic stability character of the response (i.e. the fre-
guency or time-constant behavior).



Ta itudinal Ai sfer Fon &

}i& - X, goosh
lﬁr Is[l.]] - IC-L} - Iﬂ] [— (Zg + Ups + gsinﬂl}
N FY R 2
u(s) _ M, anb +M_+ MTq} (s® — Mgs) N,
Ols) s — X, - Xr) - X, geosth Dy
— -E-u [‘I“:Ul - Zu}l - E.u] [- (E-q + Ul}ﬁ- + gS-il'.IH]] {5"33]
- (Mu + MT.} - [M“S- + Ml.'l + MTn] {52 - qu}
D, =As'+Bs"+Csf+D;s+ E, , where: (5.34)
Al — Ul - E.-_'.
By = — (U = Z)(Xu + Xy, + Mg} = Z, = M_(U; + Z)

C, = (X, + xT.}{Mq[Ul - En] + Iﬂ + Mufﬂl + Eq}] + MqIﬂ — X, + Mﬁgsinﬂi -
—(M_+ MT_HU] + Zg)

D, = E.?.inﬂllmu + My = M (X, + ?‘ET.J] + Emsﬁllz“”a (Mo MU, - zu}] '
# M+ M) = XU, + 29 + ZX M, +
+ (X, + Krj[(Mﬂ + Mg (U + Zg) - Mq?‘u}

+ gsinﬂll[h-'[u + Mp)X, = (X, + Xq)(M_ + MT":I]

N,=As +Bs’+Cs+D, . where: (5.35)
Au =Xy (U - Z)

B, = — x&:[(u, ~Z Mg+ Z + M. (U, + Zg) + 2, X

[ ——

':u. = x'&:lquu + Mﬂgﬁlﬂﬂl - l:M'!.I + MT_:HU] =+ E-q-}] +
+ z&[ ~ M_gcos8y — xﬁmq} + Mh{?‘iu[”[ + 79 — (U, - zﬂ}gmsa,]

Dy, = }-i‘ﬁu{hﬂ‘,1 + M-,-u}gsinﬂl - ?.’E.*Magcns[l] + Ma‘.(z“gcmﬁl — X_gsinb,)




Tuble 5.3 (Continued) Longitudinal Airplane Transfer Functi

(s — X, — xT.]' J{b: geosh,
_ : _
as) _ (M, + M) My (2 — Mgs) N
Bls D
t:{. } E] |
(5.36)
Ng = Ags® + Bos® 4+ Cos + Dy, where : (5.37)
Ay = 2-,5,1
By = X Z, + 3-:-,[ - Mg — (X, + :{T“}} + My (U, + Zg)
Ca = Xy [(Uy + Zg)(M,y + Mp) = MyZy| + Zy My(Xy + Xp) +
+ Maﬂl — gsinb; — (U, + Z(X, + :h;T_)]
Dp = — X3 (M, + MT\l]gsinH] + 7y (M, + My Jgcosf, +
+ MEEI':KU + :‘{T,,]'gﬁi“ﬂl — I.ugcusﬂl}
(s — Xy— le] — Xa }‘:.f..L
- Zy Is(U) — Z) — Z] Zs,
— (M, + M — M s+ M+ M %)
oy _ 1 T [Mas + Mo + My, 2 N sy
Bel5) ]j1 BN
Ny = .n"LHsz + Bygs + Cy . where: {5.39)

[w=}
&
Il

xﬁr{zumu + (U, — Z (M, + MT‘)} + za![{m.;. + Mg ) — My(X, + th}} +
+ Mﬁr[— Zo— (U, = ZHX, + }.'.Tuj]
Cy = X5 [(Ma + My )Zy — ZolM, + My} +

+ 25 [~ Mg + My )Xy + X ) + Xo(My + Mp)] + Mg {ZolXy + X)) — XoZi







