Lecture - 8
Application of Classical Control
Theory to Aircraft Autopilot
Design



1. AIRCRAFT TRANSFER FUNCTIONS

The longitudinal and lateral equations of motion were described
by a set of linear differential equations in Chapter 3.

The transfer function gives the relationship between the output of
and input to a system.

In the case of aircraft dynamics it specifies the relationship
between the motion variables and the control input

In the following sections we develop the transfer function based
on the longitudinal and lateral approximations developed in
Chapters 4 and 5. We develop these simpler mathematical models
so that we can examine the idea behind various autopilots without
undue mathematical complexity.

The X-force, Z-force, and pitching moment equations forms
the longitudinal motion. And the Y-force, rolling, and yawing
moment equations form the lateral equations.



« 2. Longitudinal T.F:

« The longitudinal motion of an airplane (controls fixed) disturbed from its
equilibrium flight condition is characterized by two oscillatory modes of
motion, Figurel illustrates these basic modes.
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Short-Period Dynamics :

In Chapter 4 the equations for the short-period motions were developed for the
case where the control was held fixed. The equation with control input from the
elevator in state space form can be written as

Ac _ Za/uﬂ 1 Ao Z,sr/!ug
[AQ] - [Ma + My Z,/u, Mq + Ma]I:Aq:I M I:Ma( + Mazae/uo][ﬁae] (8.1)

Taking the Laplace transform of this equation yields
(s — Z,/uo) Aa(s) — Agls) = Za,/ uy Ad,(s)
— (M, + M, Z,/uo) Aals) + [s — (M, + My)] Aq(s) = (M, + M,Z; Juy) AS,

If we divide these equations by A8, (s)
Aal(s)  Agls) _

(S _ Zafuﬂ) &63(5) aae(s) Zﬁe/%
B CAals) . _ Ag(s) _ _%ﬁ_f
(Mo + MiZufuo) 5705 + [s = (M, + M) 575 = My, + Ma!



Aa(s) _ Agls)

Short-Period Dynamics _ —
y (S Z/uo) Aa,(S) AS,(S) Zﬁ,/u()
Aa(s) B Ag(s) Zs,
—-(M, + M,Z./uy) —— 5.05) + [s — (M, + M,;)] 25.(5) =M, + M, ”

Solving for Aa(s)/AS,(s) and Ag(s)/Ad,(s) by Cramer’s rule yields
23 /uu —1
Zs
M, + M=% s — (M, + M,)

Ugy

Aa(s) _ Ni(s) _
Ad,(s)  Ay(s) s — Z,/ug —1
(M, + M;Z,/u,) s — (M, + M)

Aa(s) _ N5(s) A, + B,
Ad,(s) f’lﬁp(s) As*+ Bs + C

Short-period transfer function approximations

A A, or A, B,B,, or B, C
&sp(s) l _{Mq + Mt:'r + Zq/uﬂ} Z,_,M“.fu{] - Ma:
N2Z (s) Zs, /1y M, — M, Z;, /ug

N¢ (s) Ms, + M Zs Ju, M, Zs [ug — M3, Z,[u,




Short-Period Dynamics (- 7 4, 32 _ A4 _ ,

angle

AS.(s) A8(s)

B Aa(s) 3 | Ag(s) _ é_
(Ma + Mdza/u()) AS((S) + [S (Mq + Ma)] AS,,(S) Mﬁl, + Mu u()
The transfer function for the change in pitch rate to the change in elevator
s — Z,/ug Zat,/uo
Z
~ (M, + MyZofup) My + M=
Ag(s) _ Ng(s) ‘ Uo
ASE(S) Asp(s) S — Za/uo __1
—(M, + M,Z./u)) s — (M, + M,)
Ag(s) Ni(s) A, + B,

AS(s) A.(s) As?+ Bs+ C

Short-period transfer function approximations
R N T L A T T ST s

A A, O0r A, B,B,,or B, C
ﬁsp{s) l _(Mq + M{i + Zl:r/uﬂ} Zuquuﬂ - Ma:
NZ (s) Zs,/uy M, — M, Z; /u,

Nﬁf(-‘-") Mﬁ, + M&Za,./“n Maza,,/”n - Ma,za/”n




Long-Period or Phugoid Dynamics
The state-space equation for the long period or phugoid approximation are as

follows:
_ X X
Au Xoo =8 |ra, % Tx T As,
- = Zﬂ + zﬁt zﬁT
Ad —2 0 || A ~— ——T|| A5,
U, Uy Uy,

The Laplace transformation of the approximate equations for the long period are

(s — X,) Au(s) + g AB(s) = X; A8,(s) + X, Ad(s)

Z Z
Ze Aus) + 5 80(s) = — =% A&, (5) — 2 ASy(s)
Uy Uy

Hy

The transfer function Au(s) /A8, (s) and A8(s)/A8.(s) can be found by setting Ad,(s)
to 0 and solving for the appropriate transfer function as follows:

Xs, 8
Au(s) Ab(s) —Zs
- X + = Aj ¢
G- X% " 8 ne - s |
Z, Au(s) b A6(s) _ _Eﬁ: Ad,(s) s— X, 8
uy Ad,(s) AS,(s) Uy Z,
ﬁn(s) _ XﬁeS + gZa(/uo u_u s
AS(s) Z.8

s+ X5 —
Uy



* Long Period Dynamics s — X, Xs
 The transfer functions can be written in Z, L,
« asymbolic form in the following manner: A8(s) Uy Uy
AS,(s) = _
" e s — X,
Auls) _ Ni() A+ B, -
Ad.(s) As) As"+ Bs+ C u—" $
A6(s) _ N3 A + B, 2, (X,Z& _z,,x,s,)
Ab,(s) As) As°+ Bs+C Ab(s) U y o
A8, (s) ?— X5 — Z.8
Long-period transfer function approximati..... -
| A., A,,orA, | B,B,,orB, C
A,(s) 1 -X, —Z,8/uq

N?‘r{ﬂ _Zﬁpiful.‘n X, zﬁ,f“u - ?:u xﬁ,.fun




Roll Dynamics

The equation of motion for a pure rolling motion, developed in Chapter 5, is
Ap — L, Ap = L; A3,

The transfer function Ap(s)/5,(s) and A¢(s)/Ad,(s) can be obtained by taking the
Laplace transform of the roll equation:

(s — L,) Ap(s) = Ly Ad,(s) (8.21)
Ap(s) Ly,
or A5.(5) = L (8.22)
Put the roll rate Ap is defined as Ad; therefore,
Ap(s) = sAd(s) (8.23)
L
or Adls) _ __ s, (8.24)

Ad.(s) s(s — L,)



Dutch Roll Approximation
The approximate equations can be shown to be

[aﬁ] _ [rﬂ/m) =1 - r,fun)][:iﬁ] . [rﬁ,/uu 0 ][aa‘,]
Ar Nﬁ N_.. Ar Nﬂr Nﬁu ﬂ.ﬁﬂ
Taking the Laplace transform and rearranging yields

(s — Yg/up) AB(s) + (1 — Y, /ug) Ar(s) = Y5 Juy AS(s)
—Ng AB(s) + (s — N,) Ar(s) = N; Ad,(s) + N, Ad.(s)

The transfer functions AB(s)/AS,(s) and Ar(s)/Ad,(s) are obtained as follows:

_ AB(s) Arls) _
(s — Yp/up) AS.(s) + (1 — Y,/ u u) AS.(s) Y.ﬁ,/ﬂo Yar/‘u{} 1 — Y. /u,
N ig((s}; o= N fg(;)) =N, ABGs) _ I No, 5= N,
ﬁ.ﬁ,{s) § — Y,Bfufl 1 — Yr/H.D.
“_Nﬂ Sy Nr
AB(s) _ N5(s)  Aps + By s — Yp/uy Y /ug
AS.(s) Awl(s) As*+ Bs+ C Ar(s) — N, N
Ar(s) _ NE(s) _ As+ B, AS(s) |5 — Yy/uy 1 — Y/uo
AS.(s) Apr(s) As*+ Bs+ C ~N, s — N,




Dutch Roll Approximation Ag(s) _ N§(s) _ Ags + By
AS.(s) Ape(s) As>+ Bs+ C
Ar(s) _ NE(s) _ _As+t B
AS,(s) Ape(s) As*+ Bs +C

In a similar manner the aileron transfer function can be shown to be
AB(s) _ NR(S) _  Aps + By
A8,(5) Apr(s) As*+ Bs+ C

Ar(s) _ N3 (s) _ As+ B,
A8 (s) Apls) As*+ Bs+ C

Dutch roll transfer function approximations

A,A g, or A, B, By, or B, C

Ay () | (¥ + uoN,) (YyN, = NyY, + Ny /g
NE () Y,/ u, (Y,Ns, — Y5, N, — Ny ug) fuy

N (s) N,, (NyYs, — YyNy) o

NE (s) 0 (Y,Ns, — o Ny} /to

N5, (5) Ns. —~Yu N; [Juy,




CONTROL SURFACE ACTUATOR:

Control surface servo actuators can be either electrical, hydraulic, pneumatic,
or some combination of the three. The transfer function is similar for each type.

servo actuator transfer function for a servo based on an electric motor.
motor

Ve Ken 6 Motor with rate feedback.
2

Is

rate feedback

Bns
6 k,
Tm - kmvc Ié — Tm vc IS2
v, s(r,s+1) where 7, = i B, and k = 5

If tm ( time constant), is small, the motor responds rapidly and the transfer
function of the motor with rate feedback can be approximated as:



DISPLACEMENT AUTOPILOT

In practice, the displacement autopilot is engaged once the airplane has been
trimmed in straight and level flight.

fc Vertical | © | Control B¢ Aircraft f
——— - —— d ) >
b gyro €y servo 5, ynamics &
L autopilot.
-
v Directional | ? | Control Oy
gyro Servo

A heading displacement autopilot.

Aircraft
dynamics

A roll or pitch displacement




Pitch Displacement Autopilot
The elevator servo transfer function can be represented as a first-order system:
0 k

(4 a

v Ts + 1

where Oe, v, ka, - are the elevator deflection angle, input voltage, elevator
servo gain, and T is time constant of servomotor .

Time constants for typical servomotors fall in a range 0.05-0.25 s

For Example:
The short-period transfer function for the business jet in (Appendix B) can be
shown to be

8 - A6  —2.0(s + 0.3)

‘] p A5, s(s® + 0.65s + 2.15)
iw 0 v - 8 L4

] AN v &
e 2 K, [ —2.0(s + 0.3]
8 +——T N1 1s+10 ! sis? + 0.65s + 2.15]

-11 =10 -1 0 1 2
n t

Elevator servo Short period dynamics




« Pitch Displacement Autopilot

« The problem now is one of determining the gain ka so that the control system
will have the desired performance.

» Selection of the gain k, can be determined using a root locus plot of the loop
transfer function. Figure is the root locus plot for the business jet pitch

autopilot. As the gain is increased from 0, the system damping decreases

rapidly and the system becomes unstable 8 -
--- To improve the design we could increase the . ﬁ
damping of the short-period mode by adding . , -
an inner feedback loop. : N
-4 -
-8 +— ’\/ T T
-11 -10 -1 0 1
Oref

Y

Amp

‘: 5 ¢ 9 M
® |Elevator | ¢ a8 1 >
servo ° s

Rate
gyro

Vertical
gyro




EXAMPLE. Use the PID controller for a pitch attitude autopilot as illustrated
In Figure. The transfer functions for each component are given in Table

c e Oc _| Elevator B _| Aircraft
PID > - -
servo dynamics

6 8

]

Data for Example Problem 8.1
0 U

Control element Parameters Transfer function
PID ky =7 & k,

k, = 7 —~ =k, + =+ kys

ky =7 ¢ °
Elevator servo A= —-0.1 o _ A

T = 0.1 6, 15+ 1
Aircraft dynamics :'-:;, = ‘—g Sj 9 M,

= —72 5 _—=
4 S‘, 51 - qu T Ma




EXAMPLE
Using the Ziegler and Nichols method discussed in Section 7.8, the PID gains

can be estimated from the ultimate gain Kpu, which is the gain for which the
system is marginally stable when only the proportional control is being used.
Following is the root locus sketch of the transfer function:

3.0k,
(s + 10)(s®> + 25 + 5)

The root locus crosses the imaginary axis at s = 5.13i. The gain of the system
can be found from the magnitude criteria to be kpu = 88.7.

The period, Tu = 2pi/w =1.22

G(s)H(s) =

Gains for P, PI, and PID controllers
O T T B O DO e TR S P a1

P control k, = 0.5k,, = 44.35

PI control k, = 0.45k,, = 39.92
k; = 0.45k,,/(0.83T,) = 39.42

PID control k, = 0.6k, = 53.22

"

k; = 0.6k,/(0.5T,) = 87.24
k, = 0.6k,(0.125T,) = 8.12




EXAMPLE

20

Root locus

15

10

Imaginary axis
L]

-10

-156

-15

0

Real axis

10

15

20



Amplitude

1.2

EXAMPLE

The response of the pitch attitude autopilot for the three different controllers

to a step input is shown.

Notice that the proportional controller has a steady-state error; that is, it does
not go to 1 but converges to a value of approximately 0.7.

The magnitude of the steady-state error can be predicted using the steady-

state error constants in Chapter 7:

o 2 4 [ 8 10 12 14 16

Tima (sacs)
ia) Proportional, integral, and derivative control

18

16

ﬂj\ N o
AN A A A
TETRIATAVAYAA

e | ]

Time (secs)
{b) Proportional plus integral control




K,

1.4

EXAMPLE ﬂ
1.2
The magnitude of the steady- ,\
state error can be predicted " U’F\v"‘-"“
using the steady-state error 2 08 U
constants in Chapter 7: 8
< 0.6 ]
|
0.4
0.2
0
1] 2 4 L 2] 10 12 14 16 18 20
e, = I Time (secs)
h 1 + K, {c} Proportional, integral, and derivative control
e 3.0k,
L}—Trn Gis)H(s) = L:E}_I“ st 4+ 125 + 255 + 50
for a proportional gain &, = 44.35 1S K, = 2.66
1 1
The steady-state error e, can then b lcul S = — =027
¥ - en be calculated: : | 1 K 366

J"

Therefore tk e response will go to 0.73 instead of 1 due to the steady-state error



2 Roll Attitude Autopilot

The roll attitude of an airplane can be controlled by a simple bank angle
autopilot as illustrated in Figure

Error

b signal [ ajleron | % Roll é Simple roll attitude control
actuator dynamics system.
Attitude |
gyro

In practice we would typically design the autopilot to maintain a wings level
attitude or =0

The autopilot is composed of a comparator, aileron actuator, aircraft equation
of motion (i.e., transfer function), and an attitude gyro to measure the
airplane's roll angle



E XAM PLE 2. Design a roll attitude control system to maintain a wings
level attitude for a vehicle having the following characteristics:
Ls, =20/ L,= —0.5/s

The system performance is to have a damping ratio, 5 =0.707, and an
undamped natural frequency, w,, = 10 rad/s. A potential concept of a roll
attitude control system is shown in the block diagram in Figure

Roll attitude control concept.

b € | Actuator o | Aircraft ¢ R
I k, | dynamics -
I -
Sensor |
ks
b ¢
- — G(s) —~  Simplified roll control system.




EXAMPLE?2

The roll angle to aileron input transfer function for an airplane can be shown to
be

Adls) _ Ly, _A8,(5) Adl) . Ly,
Ad,(s) s(s — L)) Gls) = e(s) A8,(s) ke s(s — L))
G(s)H(s) = k G(s)H(s) = X
s(s — L,) k= kﬂLaa (DH(s) = s(s + 0.5)

The desired damping ratio of 5 = 0.707 can be achieved with the present
control system. The gain for the system is determined by drawing a line from
the origin at 45' as indicated in the root locus plot. Recall that the damping
ratio was shown to be equal to the following expression:

Ko
|s| |s + 0.5]

{ = cos @

1 where s = —0.25 + 0.251. k = 0.0139

, the undamped natural frequency is much lower than specified @, = 0.35 rad/s



 Example 2

* Lpthe roll damping root, was 08

* shownto bea function of the ™

* wing span; therefore, we could E n'z

* make L, more negative by [

* increasing the wing span

e of the vehicle. 0.6
08

."”5}@ '
A : :
Qy, ™. O :
TR " '
* i I
.{:I,;.? \-:QE§A :
&b \'-‘N.. “H‘“n.,\ : Wnp, > Wng,
I - “-\,\HNI
. 1 .
~. iy
S -
. ‘~:. ye "x__x
T, ™
N
1 ~
1 e
T . .';:'".'.:%'13 -
: I
PZ H F.'I i
i I
Dotted line is root :
locus if pole is moved 1 L
farther to the left. ! Dashed line is
i original root locus.
]
1
!

Root locus

Hy
LS .\\
457 ~.
\
-0.8 -0.6 -0.4 0.2 L] 0.2 0.4 0.6 0.8
Real axis

--This may be impractical and so we

need to look at providing increased
damping by means of a stability

augmentation system
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