
Web Technologies
03 - Passing Data, REST and Routing

Faculty of Applied Science
Information Technology
2023-24 Fall Semester

Previous Lecture

● System Requirements

● Creating a New Laravel Project

● Laravel’s Directory Structure

● Configurations

● Architecture Concepts

● Request Lifecycle 2

Content

● Pass Request Data to Views

● What Is MVC?

● HTTP Verbs

● REST

● Controllers

3

Pass Request Data to Views

● How to pass data in request.

● How to send the data to the Views.

● How to show the data in Views with Blade.

4

Pass Request Data to Views

5

Passing Data To Views

you may pass an array of data to views to make that data available to the view:

When passing information in this manner, the data should be an array with key /

value pairs. After providing data to a view, you can then access each value within

your view using the data's keys, such as

6

Routing

In a Laravel application, you will define your web routes in routes/web.php and your

API routes in routes/api.php.

Web routes are those that will be visited by your end users; API routes are those for

your API, if you have one.

For now, we’ll primarily focus on the routes in routes/web.php.

7

Routing

The simplest way to define a route is to match a path (e.g., /) with a closure, as seen

in this example:

8

What’s a Closure?

A closure is a function that you can pass around as an

object, assign to a variable, pass as a parameter to other

functions and methods.

9

Routing

You’ve now defined that if anyone visits / (the root of your domain), Laravel’s router

should run the closure defined there and return the result. Note that we return our

content and don’t echo or print it.

10

Routing

Many simple websites could

be defined entirely within the

web routes file. With a few

simple GET routes combined

with some templates.

11

Route Verbs

You might’ve noticed that

we’ve been using Route::get()

in our route definitions.

There are a few other options

for methods to call on a route

definition, as illustrated in this

example.

12

Route Handling

Passing a closure to the route definition is not the only way handle a route,

Closures are quick and simple, but the larger your application gets, the clumsier it

becomes to put all of your routing logic in one file.

Additionally, applications using route closures can’t take advantage of Laravel’s

route caching.

The other common option is to pass a controller name and method as a string in

place of the closure.

13

Route Handling

This is telling Laravel to pass requests to that path to the index() method of the

App\Http\Controllers\WelcomeController controller.

This method will be passed the same parameters and treated the same way as a

closure you might’ve alternatively put in its place.

14

Route Parameters

If the route you’re defining has parameters—segments in the URL structure that are

variable it’s simple to define them in your route and pass them to your closure:

You can also make your route parameters optional by including a question mark (?)

after the parameter name.

15

HTTP Verbs

The most common HTTP verbs are GET and POST, followed by PUT and DELETE.

There are also HEAD, OPTIONS, and PATCH, and two others that are pretty much

never used in normal web development, TRACE and CONNECT.

16

REST

REST is acronym for REpresentational State Transfer. REST is a software

architectural style that defines a set of constraints to be used for creating Web

services, Web services that conform to the REST architectural style, called RESTful

Web services, provide interoperability between computer systems on the internet.

17

REST

18

REST

There’s more to it, but usually “RESTful” as it’ll be used in this course will mean

“patterned after these URL-based structures so we can make predictable calls like

GET /tasks/14/edit for the edit page.”

This is relevant (even when not building APIs) because Laravel’s routing structures

are based around a REST-like structure.

19

Route Names

The simplest way to refer to these routes elsewhere in your application is just by

their path. There’s a url() global helper to simplify that linking in your views, if you

need it:

20

Route Names

However, Laravel also allows you to name each route, which enables you to refer to

it without explicitly referencing the URL.

This is helpful because it means you can give simple nicknames to complex routes,

and also because linking them by name means you don’t have to rewrite your

frontend links if the paths change.

21

Route Naming Conventions

You can name your route anything you’d like, but the common convention is to use

the plural of the resource name, then a period, then the action. So, here are the

routes most common for a resource named photo:

photos.index
photos.create
photos.store
photos.show
photos.edit
photos.update
photos.destroy

22

Break Time!

23

Route Naming Conventions

24

What Is MVC?

In MVC, we have three primary concepts:

● Model : Represents an individual database table (or a record from that

table)—think “Company” or “Student.”

● View : Represents the template that outputs your data to the end user—think

“the login page template with this given set of HTML and CSS and JavaScript.”

25

What Is MVC?

● Controller: Like a traffic cop, takes HTTP requests from the browser, gets the

right data out of the database and other storage mechanisms, validates user

input, and eventually sends a response back to the user.

26

What Is MVC?

In Figure 3-1, you can see that the end user will

● First interact with the controller by sending an HTTP request using their
browser.

● The controller, in response to that request, may write data to and/or pull data
from the model (database).

● The controller will then likely send data to a view, and then the view will be
returned to the end user to display in their browser.

27

For more details on REST
Read Chapter 13

28

Controllers

Controllers are essentially classes that organize the logic of one or more routes
together in one place.

Controllers tend to group similar routes together, especially if your application is
structured in a traditionally CRUD-like format; in this case, a controller might handle
all the actions that can be performed on a particular resource.

29

Controllers

let’s create a controller. One easy way to do this is with an Artisan command, so
from the command line run the following:

php artisan make:controller PostController

This will create a new file named PostController.php in app/Http/Controllers.

And this is how you can link it to a route:

Route::get('/posts', [PostController::class,'index']);

30

31

Resource Controllers

Laravel resource routing assigns the typical "CRUD" routes to a controller with a
single line of code. For example, you may wish to create a controller that handles
all HTTP requests for "photos" stored by your application. Using the make:controller
Artisan command, we can quickly create such a controller:

php artisan make:controller PostController --resource

This command will generate a controller at app/Http/Controllers/PostController.php.
The controller will contain a method for each of the available resource operations.

32/16

Resource Controllers

33/16

Verb/Method URl Action Route Name

GET /posts index posts.index

GET /posts/create create posts.create

POST /posts store posts.store

GET /posts/{post} show posts.show

GET /posts/{post}/edit edit posts.edit

PUT/PATCH /posts/{post} update posts.update

DELETE /posts/{post} destroy posts.destroy

HTTP Method Spoofing in HTML Forms

Since HTML forms can't make PUT, PATCH, or DELETE requests, you will need to

add a hidden _method field to spoof these HTTP verbs. The @method Blade

directive can create this field for you:

34

CSRF Protection

If you’ve tried to submit a form in a Laravel application already, including the one in,

you’ve likely run into the dreaded TokenMismatchException.

By default, all routes in Laravel except “read-only” routes (those using GET, HEAD,

or OPTIONS) are protected against cross-site request forgery (CSRF) attacks by

requiring a token, in the form of an input named _token, to be passed along with

each request.

35

What is CSRF?

36

What is CSRF?

A cross-site request forgery is when one website pretends to be another. The goal

is for someone to hijack your users’ access to your website, by submitting forms

from their website to your web site via the logged-in user’s browser.

The best way around CSRF attacks is to protect all inbound routes POST, DELETE,

etc. with a token, which Laravel does out of the box.

37

CSRF Protection

ou have two options for getting around this CSRF error.

The first, and preferred, method is to add the _token input to each of your

submissions. In HTML forms, that’s simple;

38

CSRF Protection

Preferred, method is to add the _token input to each of your submissions. In HTML

forms, that’s simple;

39

Route:list

If you ever find yourself in a situation where you’re wondering what routes your

current application has available, there’s a tool for that: from the command line, run

php artisan route:list and you’ll get a listing of all of the available routes

40

For more details on topics
of this lecture:

Read Chapter 03

41

Activities and
Next Week
Topics

This Week:

● Read Chapter 03 of Laravel: Up & Running, for more
information on MVC,HTTP Verbs and REST.

● Practice different route and passing data through
routes.

● Create a form and Response page to show a simple
profile, for the submitted data through the form

● Prepare your questions for the practical session in the
lab.

Next Week:

● Routing and Controllers.

42

References /
Further
Readings

● Matt Stauffer, 2019. Laravel: Up & Running: A

Framework for Building Modern PHP Apps.

O’Reilly Media.

● Laravel.com : Laravel’s official Documentation.

● Dayle Rees, 2016. Laravel: Code Smart.

43

