
Web Technologies
04 - Databases and Eloquent

Faculty of Applied Science
Information Technology
2023-24 Fall Semester

UPDATED!

Previous Lecture

● Collecting and Handling User Data

● Validation

● Blade Templating

● Template Inheritance

2

Contents

● Introduction

● Configuration

● Raw SQL

● Query Builder

● Eloquent

3

4

Introduction

Laravel makes interacting with databases extremely simple across a variety of

database backends using either raw SQL, the fluent query builder, and the

Eloquent ORM. Currently, Laravel supports four databases:

➔ MySQL 5.6+

➔ PostgreSQL 9.4+

➔ SQLite 3.8.8+

➔ SQL Server 2017+

5

Introduction

● Raw SQL

● Query Builder

● Eloquent ORM.

6

Raw SQL

Once you have configured your database connection, you may run queries using

the DB facade. The DB facade provides methods for each type of query: select,

update, insert, delete, and statement.

7

Query Builder

Laravel's database query builder provides a convenient, fluent interface to creating

and running database queries. It can be used to perform most database operations

in your application and works on all supported database systems.

8

Query Builder

You may use the table method on the DB facade to begin a query. The table

method returns a fluent query builder instance for the given table, allowing you to

chain more constraints onto the query and then finally get the results using the get

method:

You may access each column's value by accessing the column as a property of the

object.

9

Eloquent ORM

The Eloquent ORM included with Laravel provides a beautiful, simple ActiveRecord

implementation for working with your database. Each database table has a

corresponding "Model" which is used to interact with that table. Models allow you

to query for data in your tables, as well as insert new records into the table.

10

Eloquent ORM

To get started, let's create an Eloquent model. Models typically live in the app

directory.The easiest way to create a model instance is using the make:model

Artisan command:

11

Eloquent ORM

Once you have created a model and its associated database table, you are ready

to start retrieving data from your database. Think of each Eloquent model as a

powerful query builder allowing you to fluently query the database table associated

with the model. For example:

12

Retrieving

In addition to retrieving all of the records for a given table, you may also retrieve

single records using find, first, or firstWhere. Instead of returning a collection of

models, these methods return a single model instance:

13

Inserts

To create a new record in the

database, create a new model

instance, set attributes on the

model, then call the save

method.

14

Deletes

To delete a model, call the delete method on a model instance:

15

Updates

The save method may also be

used to update models that

already exist in the database.

To update a model, you should

retrieve it, set any attributes

you wish to update, and then

call the save method

16

For more details on
topics of this lecture:
Read Chapter 05

17

Defining Models

To get started, let's create an Eloquent model. Models typically live in the app

directory,

The easiest way to create a model instance is using the make:model Artisan

command:

18

Defining Migrations

A migration is a single file that defines two things: the modifications desired when

running this migration up and, optionally, the modifications desired when running

this migration down

19

Creating a migration

Laravel provides a series of command-line tools you can use to interact with your

app and generate boilerplate files. One of these commands allows you to create a

migration file.

20

Creating a migration

21

Creating a migration

22

Running Migrations

Once you have your migrations defined, how do you run them? There’s an Artisan

command for that:

 php artisan migrate

This command runs all “outstanding” migrations (by running the up() method on

each). Laravel keeps track of which migrations you have run and which you haven’t.

Every time you run this command, it checks whether you’ve run all available

migrations, and if you haven’t, it’ll run any that remain.

23

Running Migrations

migrate:refresh

Rolls back every database migration you’ve run on this instance, and then runs

every migration available. It’s the same as running migrate:reset and then migrate,

one after the other.

migrate:fresh

Drops all of your tables and runs every migration again. It’s the same as refresh but

doesn’t bother with the “down” migrations—it just deletes the tables and then runs

the “up” migrations again.
24

Running Migrations

migrate:rollback

Rolls back just the migrations that ran the last time you ran migrate, or, with the

added option --step=n, rolls back the number of migrations you specify.

migrate:status

Shows a table listing every migration, with a Y or N next to each showing whether

or not it has run yet in this environment.

25

For more details on topics
of this lecture:
Read Chapter 05

26

Activities and
Next Week
Topics

This Week:

● Study for the quiz.

● Read Chapter 05 of Laravel: Up & Running, for more
information on Databases and Eloquent.

● Practice different types of databases and connections.

● Create simple database for your project.

Next Week:

● Database Migrations.

● Blade Templating.

27

References /
Further
Readings

● Matt Stauffer, 2019. Laravel: Up & Running: A

Framework for Building Modern PHP Apps.

O’Reilly Media.

● Laravel.com : Laravel’s official Documentation.

● Dayle Rees, 2016. Laravel: Code Smart.

28

