
Web Technologies
05 - Request and Blade Templating

Faculty of Applied Science
Information Technology
2023-24 Fall Semester

Previous Lecture

● Pass Request Data to Views

● What Is MVC?

● HTTP Verbs

● REST

● Controllers

2

Content

● Collecting and Handling User Data

● Validation

● Blade Templating

● Template Inheritance

3

4

Collecting and Handling User Data

Websites that benefit from a framework like Laravel often don’t just serve static

content. Many deal with complex and mixed data sources, and one of the most

common (and most complex) of these sources is user input in its basic forms: URL

paths, query parameters, POST data, and file uploads.

Laravel provides a collection of tools for gathering, validating, normalizing, and

filtering user-provided data. We’ll look at those here.

5

Collecting and Handling User Data

The most common tool for accessing user data in Laravel is injecting an instance of

the Illuminate\Http\Request object. It provides easy access to all of the ways users

can provide input to your site: POST, posted JSON, GET (query parameters), and

URL segments.

6

Collecting and Handling User Data

$request->all()

Just like the name suggests, $request->all() gives you an array containing all of the

input the user has provided, from every source. Let’s say, for some reason, you

decided to have ...

7

Collecting and Handling User Data

$request->except() and $request->only()

$request->except() provides the same output as $request->all(), but you can

choose one or more fields to exclude—for example, _token. You can pass it either a

string or an array of strings.

$request->only() is the inverse of $request->except(), you will only get the field

that you specify in the only() method.

8

Collecting and Handling User Data

$request->has()

With $request->has() you can detect whether a particular piece of user input is

available to you.

$request->method()

returns the HTTP verb for the request, and $request- >isMethod() checks whether

it matches the specified verb

9

Validation

Laravel has quite a few ways you can validate incoming data. We’ll cover form

requests in the next section, so that leaves us with two primary options: validating

manually or using the validate() method on the Request object. Let’s start with the

simpler, and more common, validate().

10

Validation

validate() on the Request Object

The Request object has a validate() method that provides a convenient shortcut for

the most common validation workflow.

11

Validation

We only have four lines of code running our validation here, but they’re doing a lot.

First, we explicitly define the fields we expect and apply rules (here separated by

the pipe character, |) to each individually.

Next, the validate() method checks the incoming data from the $request and

determines whether or not it is valid.

If the data is valid, the validate() method ends and we can move on with the

controller method, saving the data or whatever else.

12

Validation

But if the data isn’t valid, it throws a ValidationException. This contains instruc tions

to the router about how to handle this exception.

In our examples here we’re using the “pipe”

syntax: 'fieldname': 'rule|otherRule|anotherRule'.

But you can also use the array syntax to do the same thing:

'fieldname': ['rule' , 'otherRule' , 'anotherRule'].

13

Validation Rules

https://laravel.com/docs/10.x/validation

14

https://laravel.com/docs/7.x/validation

Validation

The validate() method on requests (and the withErrors() method on redirects that it

relies on) flashes any errors to the session. These errors are made available to the

view you’re being redirected to in the $errors variable. And remember that as a

part of Laravel’s magic, that $errors variable will be available every time you load

the view, even if it’s just empty, so you don’t have to check if it exists with isset().

15

Validation

16

Break Time!

17

Blade Templating

Laravel offers a custom templating engine called Blade, which is inspired by .NET’s

Razor engine. It boasts a concise syntax, a shallow learning curve, a powerful and

intuitive inheritance model, and easy extensibility.

18

Echoing Data

Blade uses curly braces for its “echo” {{ and }} are used to wrap sections of PHP that

you’d like to echo. {{ $variable }} is similar to <?php echo $variable ?> in plain PHP.

19

Control Structures

Most of the control structures in Blade will be very familiar. Many directly echo the

name and structure of the same tag in PHP. There are a few convenience helpers,

but in general, the control structures just look cleaner than they would in PHP.

20

Conditionals

21

Loops

22

Loops

23

Template Inheritance

Two of the primary benefits of using Blade are template inheritance and sections.

To get started, First, we will examine a "master" page layout. Since most web

applications maintain the same general layout across various pages, it's convenient

to define this layout as a single Blade view:

24

25

Template Inheritance

As you can see, this file contains typical HTML markup. However, take note of the

@section and @yield directives. The @section directive, as the name implies,

defines a section of content, while the @yield directive is used to display the

contents of a given section.

26

Extending A Layout

When defining a child view, use the Blade @extends directive to specify which

layout the child view should "inherit".

Views which extend a Blade layout may inject content into the layout's sections

using @section directives. Remember, as seen in the example above, the contents

of these sections will be displayed in the layout using @yield:

27

28

Extending A Layout

In this example, the sidebar section is utilizing the @parent directive to append

(rather than overwriting) content to the layout's sidebar. The @parent directive will

be replaced by the content of the layout when the view is rendered.

29

For more details on topics
of this lecture:
Read Chapter 04

30

Lab Task

31

● Make a controller with resources(all 7 functions)

● Make a route (in accordance with REST) for each function.

● Make a view for creating a new resource and write the necessary code for the

form.

● Write the necessary code in the store() function to validate the data from the

form and show the error messages if there were any validation errors.

● Send all the data that was received from the form to another view and show all

the data with some styling.

Activities and
Next Week
Topics

This Week:

● Read Chapter 03 of Laravel: Up & Running, for more
information on MVC,HTTP Verbs and REST.

● Practice different route and passing data through
routes.

● Recreate last weeks assignment with controllers and
use the blade templating elements.

● Create a Github Student Account.
● Download and install git-fork.com

Next Week:

● Databases and Eloquent.

32

References /
Further
Readings

● Matt Stauffer, 2019. Laravel: Up & Running: A

Framework for Building Modern PHP Apps.

O’Reilly Media.

● Laravel.com : Laravel’s official Documentation.

● Dayle Rees, 2016. Laravel: Code Smart.

33

