Time Response of Second-Order Control System

The order of a control system is determined by the power of s in
the denominator of its transfer function. If the power of s in the
denominator of transfer function of a control system is 2, then the
system is said to be second-order control system. The general
expression of transfer function of a second order control system is
given as

Cls} wp
R{s} %+ 2wns +w?

R(s)* wh C(s)

Here, T and wn are damping ratio and natural frequency of the system

respectively and we will learn about these two terms in detail later on.
Therefore, the output of the system is given as

2
wﬂ-

= Hs) - 52 + 2 s + w2

C{s)}

Characteristics equation of time response of second-order control system:
The general equation of fransfer function of second order

control system is given as:

Cls) _ g
R{s}) &+ 2wns+ wl

If the denominator of the expression is zero,
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2+ 2w,s + w.i =10
= 52+2§wns+C2wﬁ—Cﬂwi+wi =0
= {5+ {un)’ — (il + 0 =0
2

= {5+ Cwn) + (Wn 1—C“) =10

= 8= —(wn + juwn/1 - or —{wn — jwnv/1-?

Putting, wg = wp/1 — {2

And , a = Cwn

Then ,s=a+ jwd
The dynamic behavior of the second-order system can then be described in terms of two
parameters  and w,. If 0 < £ < 1, the closed-loop poles are complex conjugates and lie
in the left-half s plane. The system is then called underdamped, and the transient re-
sponse is oscillatory. If £ = 1, the system is called critically damped. Overdamped sys-

tems correspond to { > 1.The transient response of critically damped and overdamped
systems do not oscillate. If { = 0, the transient response does not die out.

We shall now solve for the response of the system shown in Figure above to a unit-step

input. We shall consider three different cases: the underdamped (0 < { < 1), critically
damped (£ = 1), and overdamped (£ > 1) cases.

If we consider a unit step function as the input of the system,

(1) Underdamped case (0 < < 1): In this case, C(s)/R(s) can be written

2
C(s W,

R(s) (s + Ca, + ju)(s + Cw, — jay)

where ws = w.V 1 — {2, The frequency wq is called the damped natural frequency. For
a unit-step input, (s) can be written

@,
(¥ + 2Lays + aY)s

s) =
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The inverse Laplace transform

1 s+ 2w
Cis) =— - n
(<) s 5+ 28w, + @
= l — § + Cmﬂ — Cmn
s (+iw)+e; +in)+d

Hence the inverse Laplace transform
£ = (i)

=1_ -t t _I_L .

e (Eﬂﬂ Wyt mﬂlﬂ ﬂ]‘dt)

=1- € sin wr+tan“——1_c fort=0
‘\,i‘l.._Ez d C ) Iri=

The error of the signal of the response is given by

e(t) = r(8) — (i)
= e'ﬁ%#(cns ,f + vlch? sin mdr) fort =

From the above expression it is clear that the error of the signal is of

oscillation type with exponentially decaying magnitude when { < 1. The

frequency of the oscillation is wd and the time constant of exponential

decay is_1/Cwn. Where, wd, is referred as damped frequency of the

oscillation, and wn is natural frequency of the oscillation. The tferm ¢
affects that damping a lot and hence this term is called damping ratio.

(2) Critically damped case (£ = 1): If the two poles of C(s)/R(s) are nearly equal, the
system may be approximated by a critically damped one.
For a unit-step input, R(s) = 1/s and C(s) can be written
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|:\,_}2

M

A= T s

The inverse Laplace transform
ey=1-e%1+w1), fot=l

(3} Overdamped case (£ > 1): In this case, the two poles of C{s)/R(s) are negative real
and unequal. For a unit-step input, R(s) = 1/s and C(s) can be written

2
Wy

s} = (s + Cw, + mn\/zr— 1)(s + Lo, — m,,\/gz - 1)s

The inverse Laplace transform

- _ 1 —(E+ VE 1wy
D=1+ -1+ ve-1°
_ 1 TRV P
WNE 1 -VE-1)°
= w, [e e
_1+2;ﬁ(31 s, )’ fore=0

where 51 = (£ +V 2 — Dw, and 52 = (§ — V & — 1)w,. Thus, the response c(¢) in-

cludes two decaying exponential terms.

A family of curves ¢{f) with various values of £ is shown in Figure
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A second-order system:

-

0< <l

- - 2
S1, = =60, T jo,~[1-¢

¢ =0:

S, = +jo,

G(s)=

2
@,

s’ +20m s+ o)

XN overdamped
3
{ critically damped
x
o] ’ underdamped
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Definitions of transient-response specifications.

The performance of the control system can be expressed in the term
of fransient response to a unit step input function because it is easy to
generate. Let us consider a second-order control system in which a unit
step input signal is given and it is also considered that the system is initially
at rest. That is all initial conditions of the system are zero. The tfime
response characteristics of the system at underdamped condition is drawn
below.
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There are number of common terms in transient response
characteristics and which are:

1. Delay time (td) is the time required to reach at 50% of its final value by
a time response signal during its first cycle of oscillation.

2. Rise time (tr) is the time required to reach at final value by a under
damped time response signal during its first cycle of oscillation. If the
signal is over damped, then rise time is counted as the time required by the
response to rise from 10% to 90% of its final value.

In order to derive the expression for the rise time we have to equate
the expression for c(1) = 1. From the above we have:

77



e~ gin |wy/1 — (2t + tan™1 X 1{_‘:2
J1-02

On solving above equation we have expression for rise time equal to

ct)=1=1—

1 412
T —tan M

tj' -

2

RV

Thus, the rise time ¢, is

where § is defined in Figure .

jw
7 S
Wnu'l*—f i p

o
0 o

—o’
4>i [, |
3. Peak time (tp) is simply the time required by response to reach its first
peak i.e. the peak of first cycle of oscillation, or first overshoot.

On differentiating the expression of c(t) we can obtain the expression
for peak time. dc(t+)/ dt = O we have expression for peak time,

. =
e e a—
Wy 1 — L‘z
i
o) wd

4. Maximum overshoot (Mp) is straight way difference between the
magnhitude of the highest peak of time response and magnitude of its steady
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state. Maximum overshoot is expressed in ferm of percentage of steady-
state value of the response. As the first peak of response is normally
maximum in magnhitude, maximum overshoot is simply normalized difference
between first peak and steady-state value of a response.

Mazimum % Overshoot = cltp) — c(o0)

(o0) x 100%

Now it is clear from the figure that the maximum overshoot will occur at
peak fime tp hence on putting the value of peak time we will get maximum
overshoot as

% MP = e~"V1-C « 100

5. Settling time (ts) is the time required for a response to become steady.
It is defined as the time required by the response to reach and steady
within specified range of 2% to 5% of its final value. Settling time is given
by the expression:

4
tS — E
t, =4T = 4_4 (2% criterion)
g Cw,
t,=3T = 3.2 (5% criterion)
o Lu,

6. Steady-state error (€ss ) is the difference between actual output and
desired output at the infinite range of time.

Eos = t]_i_m [r(t) — c(t)]

—+30

Deriving an Expression of Rise Time:
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The expression of underdamped second-order control system with unit step
input function,

sin { (wnm) ¢4 ¢}
Where

_r
¢ =tan—! 1{ S

Again, as per definition, the magnitude of output signal at Rice times is 1.
That is c(t) = 1, hence

Deriving an Expression of Peak Time:
As per definition at the peak fime, the response curve reaches tfo its
maximum value. Hence at that point,
de(t)
dt

=10
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1- 2
-/ T0) 40}
Putting, d‘;{:) —0

E—Cw"i

TG s/ T0) ) vt sy ) 4]

. —
0

Wp 1—§2ma{(wﬂw1— ) } fjwﬂm{( Qﬂ)t+qﬁ}
> tan [(wnT=0) 4 6] = 228 — e
(wﬂ,\f’l—fjg)tznﬂ

Where, n =1,2,3...

tp=

Wpa/1 — (2
The maximum overshoot occurs at n= 1.
Deriving an Expression of Maximum Overshoot:

If we put the expression of peak time in the expression of output response
c(t), we geft,
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clthner =1 — 5in
o) —
Wn\h
jc[t)?m—l_e sin (wn 1 Cz) i ¢
1-¢? W/ 1 — (2
j”_:e vl._'q_—“_.z
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Deriving an Expression of Settling Time

It is already defined that settling time of a response is that time
after which the response reaches to its steady-state condition with value
above nearly 98% of its final value. It is also observed that this duration is
approximately 4 times of time constant of a signal. At the time constant of
a second-order control system is 1/C wn, the expiration of settling time can
be given as

4
. — —
£ cwn

Now we will see the effect of different values of { on the response. We
have three types of systems on the basis of different values of .

1.  Under damped system: A system is said to be under damped system
when the value of { is less than one. In this case roots are complex in
nature and the real parts are always negative. System is asymptotically
stable. Rise time is lesser than the other system with the presence of
finite overshoot.
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2.  Critically damped system: A system is said to be critically damped
system when the value of {is one. In this case roots are real in nature and
the real parts are always repetitive in nature. System is asymptotically
stable. Rise time is less in this system and there is no presence of finite
overshoot.

3. Over damped system: A system is said to be over damped system
when the value of T is greater than one. In this case roots are real and
distinct in nature and the real parts are always negative. System is
asymptotically stable. Rise time is greater than the other system and
there is no presence of finite overshoot.

4.  Sustained Oscillations: A system is said to be sustain damped system
when the value of zeta is zero. No damping occurs in this case.
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Damped Natural

Wy — w!l\/l o §2

Frequency
o= {w,
1 Wy
B =tan ' —
ag
=T P
Rise time ro=
Wy
/ T
Peak time —
P w,
M p = e_(U / wd)'”' — e_(éu/ 1_VZ)W
Maximum
overshoot c\f,) — c(oO
= (p)c( )( )><100%
0
4 L
f, = o (2% criterion)
wn
Settling time
3 L
[, = o, (5% criterion)
wn
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Example.1 : Consider the second order system where {=0.6 and wn=5 rad/sec. find the rise
time tr , peak time tp, maximum overshoot Mp, and settling time ts when the system is
subjected to a unit-step input?
Solution:

From the gi{/en values of ¢ and w,,, we obtain w; = w,,\/ﬁ =4ando = {w, = 3.
Rise time t,: The rise time is

T—pB 314-p

l‘r= =

Wy 4
where 3 1s given by
4
B =tan' ¢ = tan"' = = 0.93 rad
o 3
The rise time ¢, is thus
3.14 — 0.93
t,=———=1055sec
4
Peak time t,: The peak time is
T 3.14
=— = = 0.785
l, o, 1 785 sec

Maximum overshoot M P The maximum overshoot is
Mp — ef((r/w,,)‘h' — 67(3/4)><3.14 = 0.095
The maximum percent overshoot is thus 9.5%.

Settling time t,:  For the 2% criterion, the settling time is

4 4
t,=—=—=133sec
o 3

For the 5% criterion,

I T
s =5 =3~ Lsec

Example.2: For the system shown in figure, determine the values of gain K and velocity-
feedback constant Kh so that the maximum overshoot in the unit-step response is 0.2 and the
peak time is 1 sec. With these values of Kand Kh, obtain the rise time and settling

time.Assume that J=1kg-m2 and B=1 N-m/rad/sec.
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R(s) g C(s)
9:’ 9:’ JsiB - l >

Solution:

M, = e ¢/VI ~C)a

This value must be 0.2. Thus,

e WNV1=0m — 2

or
{m L
— = 1.61
which yields
{ = 0.456
T
t,=—=1
P,
or
w,; = 3.14
Since ¢ 15 0.456, w,, 1s
w, = ———— = 3.53

Since the natural frequency w, is equal to VK/J,
K = Jo} = @* = 125 N-m

Then K, is. from Equation (5-25),

_2VKJ;-B 2VK{ -1
b K B K
85
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Rise time t,: From Equation (5-19), the rise time ¢, 1s

T — 3
t, =
Wy

where

o)

B =tan'— = tan'1.95 = 1.10

o
Thus. ¢, 1s

t, = 0.65 sec

Settling time t,;:  For the 2% criterion,

4
t, = — = 248 sec
(02

For the 5% criterion.
3

t, = — = 1.86 sec
o

Example.3: When the system shown in figure (a) is subjected to a unit-step input, the system
output responds as shown in figure (b) . Determine the values of K and T from the response

curve.
R(s) @ K Cls)
+ — —
s(Ts+ 1)

|

(a)

f(f)j

(b)
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Solution:

The maximum overshoot of 25.4% corresponds to ¢ =0.4. From the response curve
we have

Consequently,

It follows that
w, = 1.14

From the block diagram we have

C(s) K
R(s) Ts>+s+ K

K
(Uﬂ 'T'J -wﬂ T

Therefore, the values of T and K are determined as

from which

1 1

= = 1.09
2w, 2 %04 X114

T:

K =&’T =114 X 1.09 = 1.42
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