DNA (Deoxyribonucleic Acid)

DNA (Deoxyribonucleic Acid)

➤ James Watson and Francis Crick first proposed the structural model of DNA in 1953.

- ➤ They got the Nobel Prize for their work in 1962.
- Proposed Double Helix model for structure of DNA- remarkable proposition was base pairing between two strand of polynucleotide. Comparable to twisted ladder.

NUCLEOTIDES

Each DNA (and also RNA) strands consists of chain of nucleotides.

- Each nucleotide chain is made up of three main components
 - 1. Nitrogenous base These bases are classified into two types
 - 1. Purines The purines bases are Adenine (A) and Guanine (G).
 - 2. Pyrimidines The pyrimidine bases are Thymine (T), Cytosine (C) and Uracil (U) (Uracil takes place of Thymine in RNA).
 - 2. Deoxyribose Sugar It is a pentose sugar with 5 carbon atoms
 - 3. Phosphate molecules

BONDS BETWEEN NUCLEOTIDES

The two nucleotides chain of DNA are held together by two types of molecular forces.

Hydrogen Bonds

- These are formed between the nitrogenous bases on opposite nucleotide strands.
- > They are always between a purines and pyrimidine nitrogenous base only.
- Adenine base on one strand always pairs with thymine on the other strand (A-T or T-A)
- Guanine base on one strand pairs with cytosine on the other hand. (G-C or C-G)

PHOSPHATE DIESTER BONDS

These bonds are between sugar molecules

CLASSIFICATION OF DNA

- Depending on the types of DNA Sequence
- 1. Single copy DNA Sequence In this type nucleotide sequences are present only once without any repetition of nucleotide. They account for 50-60 % of human DNA.
- 2. Moderately repetitive DNA Sequence In these the nucleotide sequences are repeated many times and constitute about 25-40 % of human DNA. Most of them have no function.
- 3. High repetitive DNA Sequences It is characterized by repetition of nucleotides several times (Hundreds to millions). These are non coding sequences and constitute about 10-15% of Human DNA.

FUNCTION OF DNA

- It is the genetic material, therefore responsible for carrying all the hereditary information.
- It has property of replication essential for passing genetic information from one cell to its daughters or from one generation to next.
- Crossing over produces recombination
- Changes in sequence and no. of nucleotides causes Mutation which is responsible for all variations and formation of new species.
- ➤ It controls all the metabolic reaction of cells through RNAs and RNA directed synthesis of proteins.

GENE

DNA (Deoxyribonucleic Acid)

GENE

- ➤ The gene is the Functional unit of Heredity.
- Each gene is a segment of DNA that give rise to a protein product or RNA.
- > A gene may exist in alternative forms called alleles.
- Chromosome in fact carry genes.
- Each chromosome consists of a linear array of genes.

GENE STRUCTURE

- Each gene consist of a specific sequence of nucleotides.
- > Gene may be silent or active.
- When active the genes direct the process of protein synthesis.
- Genes do not code for proteins directly but my means of genetic code.
- ➤ The genetic code consists of a sequence codeword called codons.
- A codon for an amino acid consists of a sequence of three nucleotides base pairs called triplet codon

Gene Structure

REGION OF GENE

One Gene (three regions)

AGCTTG TCATCGCCAACGACA ATGGC

Promoter Coding Termination Sequence

They are, in order, the promoter, coding region, and termination sequence.

INITIATOR AND STOP CODONS

The boundaries of a gene is known are known as start and stop codons.

The start codons tells when to begin protein production and stop (termination) codons tells when to end the protein production.

CODING REGION

- ➤ The nucleotide sequence between the start and stop codons is the core region known as coding region.
- This region is divided in to two main segment namely exons and introns.

- ➤ Exon This region codes for producing a protein
- ➤ Introns These are the regions between exons and do not code for a protein. (Non coding region)

REGULATORY REGION

- ➤ These are also non coding regions which control gene expression.
- ➤ Promoters These are the regions which bind to transcription factors either strongly or weakly.
- ➤ Enhancers These are the regions which can enhance the effect of weak promoter.
- ➤ Silencers These are the regulatory regions that can inhibit transcription.

RNA

RNA

- > The RNA is chiefly presents within the ribosomes and nucleolus.
- > RNA differs from DNA in three main ways:
 - > RNA is single stranded
 - The sugar residue within the nucleotide is ribose rather than Deoxyribose.
 - > Specific pyrimidine base Uracil is used in place of Thymine.

Types of RNA

- > The two major types of RNA are:
- Coding RNA (m-RNA)
- ➤ Non Coding RNA (nc-RNA)

TYPES OF RNA

m- RNA

- > m-RNA contains a coding RNA Sequence. It carries the message from the DNA to the ribosomes in the cytoplasm required for protein synthesis.
- It contains both exons and introns similar to DNA.
- During protein synthesis the introns (non coding sequences) are cut and removed resulting in smaller m-RNA.

NON Coding RNA

- These do not code for proteins.
- ➤ Transfer RNA It conveys the message carried by the m-RNA to the ribosomes.
- ➤ Ribosomal RNA (r-RNA) They play a significant role in the binding of m-RNA to ribosomes and protein synthesis.
- ➤ Micro-RNA (mi-RNA) The miRNA play a role in normal development.

PROTEIN SYNTHESIS

STEPS IN PROTEIN SYNTHESIS

- > Several steps are involved in the synthesis of protein.
- > The genetic information in cells flows in one way:

- DNA Specifies the synthesis of RNA
- > RNA Specifies the synthesis of Amino Acids.
- The two main steps in protein synthesis are transcription and translation.

TRANSCRIPTION

- Transcription is a process in which genetic information is transmitted from DNA to RNA.
- > It is the first step in protein synthesis and occurs in the nucleus.
- When the genes are active, proteins called transcription factors are produced.
- > These transcription factors binds to promoter or enhancer region of genes
- > Transfer of the genetic information from DNA –dependent RNA polymerase (Transcriptase)
- It produces a new complimentary copy of the whole gene and is known as primary RNA molecule.
- The primary RNA molecule undergoes splicing in which introns are removed from exons, to produce single-stranded messenger ribonucleic acid (mRNA) molecule.
- The mRNA migrates from the nucleus to the cytoplasm and is used as a template for protein synthesis.

TRANSLATION

- > Translation is the transmission of the genetic information from mRNA to form protein.
- In the cytoplasm, mRNA to form protein.
- ▶ In the cytoplasm, mRNA attaches to ribosomes, which is the site of protein production.
- During translation, smaller RNA molecules known as transfer RNA (tRNA) bind to the ribosome.
- The tRNA deliver amino acid to the ribosomes and synthesizes a linear chain of amino acids called a polypeptide (primary protein) and later forms proteins.

Translation and Proteins

