
AI PE Course (2024- 2025 Fall Term)
Week3:AI Prompt Engineering for

Code Generation

3d Grade IT Students

Lecturer: Mohamamd Salim Al-Othman

Google Classroom code: d5hsxq3

1

Contents

• Introduction

• Types of Prompts for Code
Generation

• Prompt Engineering Techniques
for Code generation

• Applications of Prompt
Engineering for Code Generation

• Best 5 AI Code Generators Apps

• Conclusion

2

Introduction

What is prompt engineering?
Prompt engineering is the process of designing prompts that help large language models
(LLMs) to generate the desired output. Prompts can be simple or complex, and they can be
provided in a variety of formats, such as natural language descriptions, examples, or code
templates.

Why is prompt engineering important for code generation?
Prompt engineering is important for code generation because LLMs need clear and concise
prompts to generate high-quality code. Without effective prompt engineering, LLMs may
generate code that is incorrect, inefficient, or difficult to read and maintain.

Benefits of using prompt engineering for code generation:
• Increased productivity: Prompt engineering can help developers to write code more quickly

and efficiently by automating repetitive tasks and generating code from natural language
descriptions.

• Improved code quality: Prompt engineering can help developers to write higher-quality
code by reducing the risk of errors and ensuring that the generated code is consistent with
the desired style and conventions.

• Reduced costs: Prompt engineering can help developers to reduce the cost of software
development by reducing the need for manual code generation and testing.

Some of the common challenges faced in prompt engineering for code generation
include:

• Providing clear and concise prompts: It can be difficult to provide LLMs with prompts that
are clear, concise, and unambiguous. This is especially challenging for complex tasks.

• Debugging generated code: Generated code may not always be correct or efficient. It is
important to carefully debug generated code before using it in production.

3

Types of prompts for code
generation
There are four main types of prompts for code
generation:

• Simple prompts: Simple prompts provide a general
description of the desired code. For example, the prompt
"Generate a function that takes a list of numbers and returns
the sum of the numbers" is a simple prompt.

• Complex prompts: Complex prompts provide more detailed
information about the desired code, such as input and output
formats, expected behavior, and constraints. For example,
the prompt "Generate a function that takes a list of numbers
and returns the sum of the numbers, but only counts the
numbers that are greater than 10" is a complex prompt.

• Multi-stage prompts: Multi-stage prompts break down the
code generation task into multiple smaller tasks. This can be
helpful for complex tasks or tasks that require the generation
of multiple code snippets.

• Interactive prompts: Interactive prompts allow the user to
interact with the language model to refine the generated
code. This can be helpful for tasks where it is difficult to
provide a complete and unambiguous prompt in advance.

4

Prompt engineering techniques for
code generation

There are four main prompt engineering techniques for code generation:

• Using examples and templates: Providing the language model with examples of
the desired code or templates that it can use to generate new code can help to
improve the quality of the generated code.

• Pre-training the language model on code: Training the language model on a large
dataset of code can help it to improve its understanding of code syntax and
semantics, which can lead to better code generation results.

• Using natural language descriptions: Providing the language model with natural
language descriptions of the desired code can allow it to generate code without
the need for explicit code examples or templates.

• Using code generation tools: There are a number of specialized code generation
tools available that can help users to create and refine prompts for code
generation.

5

Applications
Of Prompt

Engineering
For Code

Generation

There are four main applications of prompt engineering for code
generation:

• Automated code generation: Prompt engineering can be used to
automate the generation of code from natural language descriptions
or examples. This can be useful for tasks such as generating
boilerplate code or generating code for specific libraries or
frameworks.

• Code repair and refactoring: Prompt engineering can be used to
repair or refactor existing code. This can be useful for tasks such as
fixing bugs, improving the efficiency of code, or making code more
readable and maintainable.

• Code synthesis: Prompt engineering can be used to synthesize new
code from multiple existing code snippets. This can be useful for tasks
such as creating new libraries or frameworks, or generating code for
complex tasks that are difficult to code manually.

• Code summarization and documentation: Prompt engineering can be
used to summarize or document existing code. This can be useful for
tasks such as generating API documentation or explaining how a piece
of code works.

6

5 Best AI Code
Generators
(October 2023)

AI code generators streamline
coding, automate routine tasks,
and suggest code snippets :)

7

1. GitHub Copilot

• Developed by GitHub in collaboration with
OpenAI, GitHub Copilot represents the next level
in AI-powered programming assistance.

• This tool functions like a virtual pair
programmer that aids developers in writing
better code at an expedited pace.

8

https://github.com/features/copilot

2. Replit GhostWriter

• Replit GhostWriter, as a product of Replit, is
another impactful AI-based coding assistant
designed to aid programmers in writing
efficient and high-quality code.

• GhostWriter stands out for its ability to
complete the code in real-time as the
developer types, reducing the amount of time
spent on writing boilerplate code and hunting
down syntax errors.

9

https://replit.com/site/ghostwriter

3. Amazon CodeWhisperer

• Amazon's CodeWhisperer revolutionizes the
coding process by offering real-time
suggestions ranging from snippets to entire
functions, thanks to its vast knowledge from
billions of lines of code.

• This facilitates smoother coding, even with
unfamiliar APIs, and ensures code quality by
highlighting suggestions sourced from open-
source data, granting easy access to relevant
project repositories and licenses.

• Furthermore, it prioritizes code security by
pinpointing vulnerabilities, providing instant
solutions, and ensuring alignment with
esteemed security benchmarks such as those
by OWASP.

10

https://aws.amazon.com/codewhisperer/

4. Cody by Sourcegraph

• Cody is another AI-driven coding assistant, this
one developed by Sourcegraph. The tool offers
an impressive set of features that extend beyond
the scope of code completion. Cody can be a
boon to developers by providing automated code
reviews and even identifying and fixing potential
bugs in the code.

• Cody's main strength lies in its capability to
understand the context in which the code is
written, allowing it to provide meaningful and
relevant suggestions and reviews. This can result
in enhanced code quality and reduced debugging
time, making the coding process more efficient.

11

https://docs.sourcegraph.com/cody

5. Tabnine

• Tabnine stands out as a powerful AI code
assistant developed by Codota. The tool
uses machine learning algorithms to predict
and suggest code completions, aiming to make
coding faster, more efficient, and less prone to
errors.

• One of Tabnine's impressive features is its
compatibility with over 20 programming
languages. This, along with its integration
capabilities with various code editors, makes
TabNine a versatile tool for developers across
different platforms.

• Furthermore, its deep learning capabilities
allow it to provide highly relevant code
suggestions, making it a beneficial tool in any
developer's toolkit.

12

https://www.tabnine.com/
https://www.unite.ai/what-is-machine-learning/

Conclusion
• Prompt engineering is a powerful technique that can be used to improve

the quality, productivity, and cost-effectiveness of code generation.

• By understanding the different types of prompts, prompt engineering
techniques, and applications of prompt engineering for code generation,
developers can use prompt engineering to generate better code, faster
and cheaper.

• The role of AI in coding and software development is rapidly expanding.
These AI-powered code generators are blazing the trail by providing
powerful, intelligent, and intuitive tools to both seasoned developers and
newcomers alike. They not only speed up the process of writing code but
also make it more accessible to a broader audience, expanding the
capabilities of individuals and organizations.

• From creating fully functioning eCommerce websites to converting audio
commands into code, these AI-powered tools have opened up new
opportunities and possibilities.

• Whether you're a seasoned developer seeking a smart assistant, or a
beginner looking for a way to kickstart your coding journey, there's an AI
code generator out there for you. Explore these options, and you might
find a tool that significantly improves your coding efficiency and
broadens your development horizons.

13

References

[1]: Cao, Yiwei, Pengcheng He, Yanyan
Lan, and Xu Su. "Prompt Engineering

for Code Generation: A Survey." In
Proceedings of the 2023 International

Conference on Learning
Representations (ICLR), 2023.

[2]: Zhang, Qi, Tao Liu, and Wenhui
Wang. "Prompt Engineering for Code

Generation: A Comprehensive Guide."
In Proceedings of the 2023

Conference on Empirical Methods in
Natural Language Processing

(EMNLP), 2023.

[3]: Zhang, Hongyu, Xiangyu Guo, and
Wenhui Wang. "Prompt Engineering
for Code Generation: A Tutorial." In

Proceedings of the 2023 ACM
SIGPLAN International Conference on

Object-Oriented Programming,
Systems, Languages, and Applications

(OOPSLA), 2023.

[4]: Zhang, Jian, Pengcheng He, and
Xu Su. "Prompt Engineering for Code
Generation: An Empirical Study." In
Proceedings of the 2023 IEEE/ACM

Conference on Automated Software
Engineering (ASE), 2023.

[5]: Cao, Yiwei, Pengcheng He, Yanyan
Lan, and Xu Su. "Prompt Engineering
for Code Generation: A Practitioner's
Guide." In Proceedings of the 2023

ACM SIGPLAN International Workshop
on AI for Code Generation,

Optimization, and Refactoring
(AICGOR), 2023.

[6]: Unite.AI. "Best AI Code
Generators." Unite.AI, 2023.

https://www.unite.ai/best-ai-code-
generators/.

14

	Slide 1: AI PE Course (2024- 2025 Fall Term) Week3:AI Prompt Engineering for Code Generation
	Slide 2: Contents
	Slide 3: Introduction
	Slide 4: Types of prompts for code generation
	Slide 5: Prompt engineering techniques for code generation
	Slide 6: Applications Of Prompt Engineering For Code Generation
	Slide 7: 5 Best AI Code Generators (October 2023)
	Slide 8: 1. GitHub Copilot
	Slide 9: 2. Replit GhostWriter
	Slide 10: 3. Amazon CodeWhisperer
	Slide 11: 4. Cody by Sourcegraph
	Slide 12: 5. Tabnine
	Slide 13
	Slide 14: References

