
Tishk International University
Science Faculty
IT Department

Operating Systems

3rd Grade - Fall Semester

Lecture 4: Memory Management

Instructor: Alaa Ghazi

Lecture 4: Memory Management - Agenda
 Background

Main Memory
 Cache Memory
 Address Binding

 Memory Management Approaches

1. Single Contiguous Model

2. Partition with Contiguous Allocation

3. Swapping

4. Segmentation

5. Paging

 Virtual Memory Basics

 Optimizing Applications Performance

Background

 The second most important hardware resource in the
computer system after the CPU is the Memory.

 Memory accesses and memory management are a very
important part of modern computer operation. Every
instruction has to be fetched from memory before it can
be executed, and most instructions involve retrieving
data from memory or storing data in memory or both.

 The introduction of multi-tasking OSes increases the
need for complex memory management, because as
processes are swapped in and out of the CPU, so must
their code and data be swapped in and out of memory,
all at high speeds and without interfering with any other
processes.

What is Main Memory

 Main Memory or (Random Access Memory - RAM): is
the area in a computer in which data is stored for quick
access by the computer's processor.

 RAM speed is measured in nanoseconds (billionths of a
second), while magnetic and SSD storage is measured in
milliseconds (thousandths of a second).

 Program must be brought (from disk) into memory and
placed within a process for it to be run

 Main memory and registers are only storage CPU can
access directly

CPU-Main Memory Connection
(not required in the exam)

Up to 2k addressable

k-bit
address bus

n-bit
data bus

Control lines

(, MFC, etc.)

Processor Memory

locations

Word length = n bits

WR /

Cache Memory
 Cache Memory: is a small-sized type of volatile computer

memory that provides high-speed data access to a
processor and stores frequently used computer code and
data.

 It is the fastest memory in a computer, and is typically
integrated onto the motherboard and/or directly
embedded in the processor.

Libraries Linking
 Static linking – It is the case when system libraries and

program code are combined by the loader into the binary
program image.

 Dynamic linking – It is the case when linking of the
routines to the main program is postponed until execution
time.

 Stub is a small piece of code, used to locate the
appropriate memory-resident library routine and replaces
itself with the address of the routine, and executes the
routine

 Advantages of Dynamic Linking and Shared Libraries:

1. Less program loading time

2. Less memory space

3. Less disk space to store binaries

Static Linking Diagram

Address Binding Schemes
Address binding of instructions and data to memory addresses
can happen at three different schemes:

 Compile time binding: when the absolute code will be
generated by the compiler, containing actual physical
addresses (like in MSDOS .com programs).

 Load time binding: the compiler must
generate relocatable code, which references addresses
relative to the start of the program.

 Execution time binding: is when binding must be
delayed until execution time, so the program can be
moved around in memory during execution. This is the
method which is implemented by most modern OSes.

Memory Management Approaches

1. Single Contiguous Model
2. Partition with Contiguous Allocation
3. Swapping
4. Segmentation
5. Paging

Memory Management is allocating, freeing, and re-
organizing memory in a computer system to optimize the
available memory or to make more memory available. It
keeps track of every memory location(if it is free or
occupied).

Historically, the below memory management approaches
have been used

1. Single Contiguous Model

 Is one of the most primitive ways of managing
memory especially done for the older on a
operating systems.

 So RAM is occupied by one process at a time.
Essentially at any particular instant there is only
one process and its memory size is restricted by
the RAM size.

 After this process completes executing, the next
process will be loaded into the RAM (no
sharing).

 Process memory size is restricted by RAM size.

2. Partition with Contiguous Allocation
 In this approach at any instant of time, we could have multiple

processes that occupy the RAM simultaneously but each
process should be contained in a single contiguous partition of
memory.

 As long sufficient contiguous space is available, new processes
are allocated memory. When a process completes execution,
the area in RAM that it holds will be de-allocated. Consequently
the entry corresponding to the partition table will be free.

 This approach is a slight improvement over the single
contiguous model.

 Main memory is usually partitioned into two parts:

 Resident operating system area.

 User processes area.

 The Partition Table would have the base address of a process,
the size of the process and a process identifier.

Diagram of Partition with Contiguous Allocation

Limitations of
Partition with Contiguous Allocation

 Each Process needs to be entirely in RAM.

 Allocation needs to be in contiguous memory

 External Fragmentation

 Limit the size of the process by RAM size

 Performance Degradation

External Fragmentation

 External Fragmentation – It is the case when total
memory space exists to satisfy a request, but it is not
contiguous. This is a problem with Partition with
Contiguous Allocation memory management approach.

Compaction

 Compaction: is shuffling memory contents to place all
free memory together in one large block

 Compaction is a solution to Reduce external
fragmentation.

 Compaction is possible only if relocation is dynamic,
and is done at execution time

3. Swapping
 Swapping is a technique in which a process can be

moved temporarily out of memory to Backing Store (HD or
SSD), and then brought back into memory for continued
execution.

 Backing store – is a fast disk large enough to
accommodate copies of all memory images for all
processes; and must provide direct access to these
memory images.

 The swapping procedures that are found on modern
operating systems (i.e., UNIX, Linux, and Windows) are:
 Swapping is normally disabled
 Swapping will be started if memory demand is more

than certain threshold amount of memory.
 Swapping will be disabled again once memory demand

is reduced below certain threshold.

Schematic View of Swapping

4. Segmentation
 Segmentation: is a memory-management approach

that is implemented by segmenting processes and
loading them into different non-contiguous addressed
spaces in memory with different segment address.

 In Segmentation we have a Segment Descriptor
Table which is stored in memory. Each row in the
segment descriptor table refers to one particular
segment. For instance, the Data segment 2 is at an
offset 2 in the Segment descriptor table, and the offset
would specify the Base address in RAM and the Limit
of the segment.

5. Paging
 Paging is to divide physical memory into fixed-sized

blocks called frames and divide logical memory into
blocks of same size called pages

 Physical address space of a process can be
noncontiguous.

 Paging eliminates external fragmentation , but it still
suffers from Internal fragmentation.

 Page Size is a power of 2, usually between 512 bytes
and 16 Mbytes

 To load a process of size S where

(N-1) pages < S < (N) pages,

it is required to find N free frames to load the process.

Internal Fragmentation
 Internal Fragmentation – is this size difference in

memory that happens when we divide memory to
fixed partitions and then allocated memory may be
slightly larger than requested memory.

What is Kilobyte?

Page Table
The page table is the table used to look up what frame a
particular page is stored in at the moment. It translates logical to
physical addresses.

Associative Memory is a special fast-lookup hardware cache
that can solve the two memory access problem if page table is
stored in main memory.

Q\ Why Page size selection is critical?

 A large page will result in increase of internal fragmentation

 A small page size will increase the size of the page table

The Page Table Structure can be of two types:

 Basic Paging: A single page table which stores the page
number and the offset

 Hierarchical Paging: A multi-level table which breaks up the
virtual address into multiple page tables.

Basic Paging Diagram

Shared Pages

 Shared code

 One copy of read-only code can be shared among
processes (i.e., text editors, compilers, window systems)

 It is also useful for inter-process communication if
sharing of read-write pages is allowed

 Private code and data

 Each process keeps a separate copy of the code and
data

 The pages for the private code and data can appear
anywhere in the logical address space

Shared Pages Diagram

Virtual Memory Basics

 Virtual Memory increases the available memory of the
computer by enlarging the "address space," or places in
memory where data can be stored. It does this by using
hard disk space for additional memory allocation.

 However, since the hard drive is much slower than the
RAM, data stored in virtual memory must be mapped back
to real memory in order to be used.

 Q\ Why most real processes do not need all their pages?

 Error handling code is not needed unless that error
occur.

 Only a small fraction of the arrays are actually used.

 Certain routines of programs are rarely used.

Logical vs. Physical Address Space
 The concept of a logical address space that is

bound to a separate physical address space is
central to virtual memory
 Logical address (virtual address) – it is the

address generated by the process executing
currently on the CPU.

 Physical address – it is the address seen by
the memory management unit where actual
code and data are loaded.

 The user process deals with logical addresses; it
never sees the real physical addresses

 Memory-Management Unit: is the Hardware
device that at run time maps virtual to physical
address.

Benefits of Virtual Memory
 In virtual memory, Logical address space can therefore be

much larger than physical address space

 Every process executing in the system would have its own
process page table.

 Benefits of Virtual Memory are:
 Only part of the program needs to be in memory for execution

 Allows address spaces to be shared by several processes

 More programs can run concurrently

Page Fault: is a type of trap raised when a running process
accesses a memory page that is not currently in the physical
RAM

Page replacement is finding some page in memory, which is
not really in use, in order to page it out.

The General Layout of Virtual Memory

Backing Store

Thrashing and Memory Leaks

 Thrashing: it is the case when a process does not have
“enough” pages, then page-fault rate will become very
high and the process will be busy swapping pages in and
out

 Memory Leak: occurs when an application is using more
RAM than it normally does which in turn slows down the
system, causing it to struggle with performing even the
basic tasks.

Optimizing Applications Performance

 Optimizing Applications depends heavily on memory
organization in the computer system. The next few
points offer some pointers for improving the
performance of applications under Windows :

1. Adding More Physical Memory

2. Defragment the Hard Drive containing the paging file

3. Installing Applications to the Fastest Hard Drive

4. Getting the Latest Device Drivers

5. Move Extra workload to Another Server

1. Adding More Physical Memory

 All applications run in RAM, of course, so the more RAM
you have, the less likely it is that Windows will have to
store excess program or document data in the page file
on the hard disk, which is a real performance killer.

Use one of the following Windows monitoring tools to
watch the available memory:

 Task Manager —Display the Performance tab and
watch the Physical Memory: Available value. .

 Resource Monitor —Display the Memory tab and
watch the Available to Programs value. .

 Performance Monitor —Start a new counter, open the
Memory category, and then select the Available Mbytes
counter.

2. Defragment the Hard Drive containing the
Paging File
 This is needed when the page file is located on a disk that

is heavily used by other applications.

 Hard Disk Defragmentation is to organize the files parts in
contiguous sectors on the disk, thereby improving computer
performance and maximizing disk space.

 The solution steps are:
1. move the page file to another drive temporarily,

2. set the paging file on the original drive to be fragmented to 0 MB.

3. reboot the system to enable the other paging file to be used.

4. perform the disk defragmentation on the original drive.

5. set the paging file on the original drive to the necessary values,
and reboot.

Paging file in Windows 10
(not required in the exam)

3. Installing Applications to the Fastest Hard
Drive
 If your system has multiple hard drives that have

different performance ratings, install your applications on
the fastest drive. This enables Windows to access the
application’s data and documents faster.

4. Getting the Latest Disk Drivers
 If your application works with a device, check with the

manufacturer or Windows Update to see whether a
newer version of the device driver is available. In
general, the newer the driver, the faster its performance.

5. Move Extra workload to Another Server
 For Server Machine, you may also elect to offload some

of the workload to another system.

