Tishk International University Cybersecurity Department Course Code: CBS 113

Programming Fundamentals

Lecture 3

Arithmetic, Casting, Random, Flowchart

Fall 2024 Hemin Ibrahim, PhD hemin.ibrahim@tiu.edu.iq

1,4.00

Outline

- Arithmetic Operations
- Precedence (Priority) of Operations
- Mathematical Expressions
- Type Casting
- Character Literals
- Getline (String Object)
- Random Number
- Flowchart

Objectives

- Understand and apply basic arithmetic operations, including addition, subtraction, multiplication, division, and module.
- Comprehend the rules governing the order of execution in mathematical expressions.
- Importance of declaring variables and initializing them with values
- Understand the concept of type casting and its role in programming
- Understand the ASCII and Unicode encoding schemes for character representation.
- Explore the generation of random numbers in programming
- Learn the basic symbols and conventions used in flowchart diagrams

Arithmetic Operators

Example

- total = cost + tax;
- cost = total tax;
- tax = cost * rate;
- salePrice = original / 2;
- remainder = value % 3;

Arithmetic Operators - Example

#include <iostream> using namespace std; int main() { int a = 10, b = 3;

return 0;

cout << "Addition: " << a + b << endl; // Output: 13</pre> cout << "Multi: " << a * b << endl; // Output: 30</pre>

Arithmetic Operators - Example

#include <iostream> using namespace std; int main() { double price = 19.99; int quantity = 3;

return 0;

double total = price * quantity; cout << "Total: " << total;</pre>

Output:

Total: 59.97

Arithmetic Operators

```
#include <iostream>
using namespace std;
```

```
int main() {
   double basePayRate = 10.25;
   double regularHours = 40.0;
   double overtimePayRate = 20.5;
   double overtimeHours = 13;
```

double regularWages, overtimeWages, totalWages;

```
// Calculate the regular wages.
regularWages = basePayRate * regularHours;
```

```
// Calculate the overtime wages.
overtimeWages = overtimePayRate * overtimeHours;
```

```
// Calculate the total wages.
totalWages = regularWages + overtimeWages;
```

```
// Display the total wages.
cout << "Wages for this week are $" << totalWages << endl;</pre>
```

```
return 0;
```


Output:

Wages for this week are \$676.5

Arithmetic Operators - Example

Create a C++ program to find the sale price of an item initially priced at \$39.99, with a 20% discount. Output the **regular price**, discount amount, and final sale price.

Output:

Regular price: \$39.99 Discount amount: \$7.998 Sale price: \$31.992


```
#include <iostream>
 using namespace std;
r int main() {
     // Variables to hold the regular price, the amount of a discount, and
         the sale price.
     double regularPrice = 39.99;
     double discount;
     double salePrice;
     // Calculate the amount of a 20% discount.
     discount = regularPrice * 0.2;
     // Calculate the sale price by subtracting the discount from the
         regular price.
     salePrice = regularPrice - discount;
     // Display the results.
     cout << "Regular price: $" << regularPrice << endl;</pre>
     cout << "Discount amount: $" << discount << endl;</pre>
     cout << "Sale price: $" << salePrice << endl;</pre>
```

return 0;

Precedence(Priority) of Operators

Order of operations was invented in 1912

People in 2023:

Precedence(**Priority**) of **Operators**

Precedence of Arithmetic Operators:

>Parentheses () are evaluated first. The expression in the innermost parentheses is evaluated first if the parentheses are nested. >Addition (+) and Subtraction (-) are evaluated last. >The operators with the same precedence are evaluated left to right.

$$3 * 5 + 2 = 17$$

 $3 * (5 + 2) = 21$
 $5 + 3 * 4 - 2 = 15$
 $6 * 8 / 4 = 12$
 $6 * (8 / 4) = 12$

C++ Operators can be divided into 3 levels according to their precedence ≻First: () >Second: * , / , % >Third: + , -

- >After parentheses multiplication (*), division (/), modulus (%) operators are evaluated.

$$(12 / (8 - 2)) = 2$$

 $8 + (7 - 9) = 6$
 $9 + 3 + 4 - 2 = 14$
 $16 / 4 * 2 = 8$
 $4 / 2 - 2 = 0$

Precedence(Priority) of Operators - Example

#include <iostream> using namespace std; int main(){ Ŧ

cout	<<	4	*	6	/	2	1
cout	<<	6	/	3	*	2	1
cout	<<	9	/	3	/	2	1
cout	<<	3	+	5	-	2	1
cout	<<	9	-	6	-	2	
cout	<<	9	-	((5.	- 2	2
cout cout	<< <<	9 9	- /	(6 3	5 · +	- 2 3	2
cout cout cout	<< <<	9 9 12	- / 2	(3 / (5 · + (3	- 2 3 +	2
cout cout cout	<< << <<	9 9 12 3	- / 2 /	(3 / (2	5 · + (3 /	- 2 3 + 2	2

return 0;

Arithmetic expressions in C++

Arithmetic expressions in C++ must be entered into the computer in **straight line form.**

$$\frac{1}{1+2x^2}$$

(A + B) / (C + D)

A + (B / C) + D

1/(1+2*x*x)

Arithmetic expressions in C++ Example

A + BC + D

#include <iostream> using namespace std; int main() {

> int A = 10, B = 5, C = 4, D = 2; int result = (A + B) / (C + D);

return 0;

Mathematical Expressions - Division

If one (or both) of the operands of the division operator is (are) double result will be double.

```
#include <iostream>
using namespace std;
int main(){
    double numerator, denominator;
```

cout << "Enter the numerator: "; cin >> numerator; cout << "Enter the denominator: "; cin >> denominator;

cout << "The decimal value is "; cout << (numerator / denominator) << endl;</pre>

return 0;

The decimal value is 2.5

Mathematical Expressions - Division

If the operands of the division operator are both integers result will be integer.

```
#include <iostream>
using namespace std;
int main(){
    int numerator, denominator;
    cout << "Enter the numerator: ";
    cin >> numerator;
    cout << "Enter the denominator: ";
    cin >> denominator;
```

```
cout << "The decimal value is ":
cout << (numerator / denominator) << endl;</pre>
```

```
return 0;
```


Enter the numerator: 5 Enter the denominator: 2 The decimal value is 2

#include <iostream> using namespace std; int main() {

> int x1 = 10, x2 = 3; int result = x1 / x2; // Output: Result (int / int): 3

return 0;

cout << "Result (int / int): " << result << endl;</pre>

Mixed Division with Double Result:

#include <iostream> using namespace std; int main() {

> int x1 = 10, x2 = 3;double result = x1 / x2;

// Output: Result (int / int, double result): 3.0 return 0;

cout << "Result (int / int, double result): " << result << endl;</pre>

Double Division with Integer Result:

#include <iostream> using namespace std; int main() {

> double x1 = 10.0, x2 = 3.0; int result = x1 / x2;

// Output: (double / double, int result): 3 return 0;

cout << "Result (double / double, int result): " << result << endl;</pre>

Double Division with Double Result

#include <iostream> using namespace std; int main() {

> double x1 = 10.0, x2 = 3.0; double result = x1 / x2; cout << "Result (double / double): " << result << endl;</pre>

// Output: (double / double): 3.33333 return 0;

Used to convert one data type to another. The general format of a type cast expression is:

- Data_type(Value) OR
- (DataType)Value

Example:

- double number = 3.7;
- int val;
- val = int(number);

- #include <iostream> using namespace std; int main(){

 - return 0;


```
double number = 3.7;
cout<<"number = "<<number<<endl;</pre>
cout<<"int(number) = "<<int(number)<<endl;</pre>
```

Output:

number = 3.7int(number) = 3

A value in any of the built-in types can be converted to any of the other types.

Example:

- •(int) 3.14 // changes to int to give 3
- •(double) 2 // changes 2 to a double type 2.0
- •(char) 65 // change 65 to character A

3 e type 2.

Type Casting

the total number of books they plan to read and the months they'll spend reading. Calculate and show the average number of books per month.

#include <iostream> using namespace std;

```
• int main(){
```

int books; // Number of books to read int months; // Number of months spent reading double perMonth; // Average number of books per month

```
cout << "How many books do you plan to read? ";</pre>
cin >> books;
cout << "How many months will it take you to read them? ";</pre>
cin >> months;
```

```
perMonth = double(books) / months;
// Also you can write: perMonth = (double) books / months;
```

cout << "That is " << perMonth << " books per month.\n";</pre>

```
return 0;
```


Create a C++ program that asks the user for their reading habits. Prompt them to input

UUTDI

How many books do you plan to read? 3 How many months will it take you to read them? 4 That is 0.75 books per month.

Arithmetic operators and expressions

16			
17	cout	<<	"10 + 3= "<< 10 + 3 << endl;
18	cout	<<	"10 - 3= "<<10 - 3 << endl;
19	cout	<<	"10 * 3= "<< 10 * 3 << endl;
20	cout	<<	"11 / 5= "<<11 / 5 << "\n";
21	cout	<<	"11.0 / 5.0= "<<11.0 / 5.0 << '\n';
22	cout	<<	"(int)11 / 5= "<<(int)11 / 5 << '\n';
23	cout	<<	"(int)11.0 / 5.0= "<<(int)11.0 / 5.0
24	cout	<<	"(int)(11.0 / 5.0)= "<<(int)(11.0 / 5
25	cout	<<	"(float)11 / 5= "<<(float)11 / 5 << "
26	cout	<<	"10.0 / 3= "<<10.0 / 3 << '\n';
27	cout	<<	"10 / 3.0= "<<10 / 3.0 << '\n';
28	cout	<<	"10 % 3= "<<10 % 3 << '\n';
29	cout	<<	5 << '+' << 1 << '=' << 5 + 1 << endl
30			

10 + 3 = 1310 - 3 = 710 * 3 = 3011 / 5= 211.0 / 5.0 = 2.2(int)11 / 5= 2(int)11.0 / 5.0 = 2.2(int)(11.0 / 5.0) = 2(float)11 / 5= 2.2 10.0 / 3 = 3.3333310 / 3.0 = 3.3333310 % 3= 1 5+1=6

Character Literals

The most commonly used method for encoding characters is <u>ASCII</u>, which stands for the American Standard Code for Information Interchange.

ASCII Value

		ASCII		ASCII		ASCII
9	Char	Value	Char	Value	Char	Value
		61	=	81	Q	105
	!	62	>	82	R	106
		65	A	83	S	107
	*	66	В	84	т	108
	1	67	C	85	υ	109
	-	68	D	86	v	110
	/	69	Е	87	W	111
	0	70	F	88	X	112
	1	71	G	89	Y	113
	2	72	н	90	Z	114
	3	73	I	97	a	115
	4	74	J	98	b	116
	5	75	K	99	C	117
	6	76	L	100	d	118
	7	77	м	101	е	119
	8	78	N	102	f	120
	9	79	0	103	g	121
	<	80	P	104	h	122

#include <iostream> using namespace std;

```
int main() {
```

cout << "ASCII value of 'T': " << int('T') << endl;</pre> cout << "ASCII value of 'I': " << int('I') << endl;</pre> cout << "ASCII value of 'U': " << int('U') << endl;</pre>

```
return 0;
```


Write a program that is printing the corresponding ASCII of each letter of "TIU"

Output:

ASCII value of 'T': 84 ASCII value of 'I': 73 ASCII value of 'U': 85

Characters and string Object

- Using cin with the >> operator for string input can lead to potential issues. • cin ignores leading whitespace characters (spaces, tabs, line breaks) when reading
- input.
- Once **cin** encounters the first nonblank character, it **stops** reading at the next whitespace character.
- To address this limitation, the **getline** function in C++ can be used.
- getline reads an entire line, including leading and embedded spaces, and stores it in a string object.

Characters and string Object - Example

#include <iostream> using namespace std; int main(){

string name, city;

cout << "Please enter your name: ";</pre> cin >> name; cout << "Enter the city you live in: "; cin >> city;

cout << "Hello, " << name << endl;</pre> cout << "You live in " << city << endl;

return 0;

You live in Ahmed

Characters and string Object - Example

```
#include <iostream>
 #include <string>
 using namespace std;
int main(){
     string name, city;
```

cout << "Please enter your name: ";</pre> getline(cin, name); cout << "Enter the city you live in: "; getline(cin, city);

cout << "Hello, " << name << endl;</pre> cout << "You live in " << city << endl;

return 0;

Using getline

Output:

Please enter your name: Alan Ahmed Enter the city you live in: Erbil Hello, Alan Ahmed You live in Erbil

Random Numbers

has a function, rand(), that you can use to generate random numbers.

#include <iostream> using namespace std;

int main(){ ٣

> // Seed the random number generator. srand(time(0));

// Display three random numbers. cout << rand() << endl;</pre> cout << rand() << endl; cout << rand() << endl;</pre>

```
return 0;
```


• Random numbers are useful for lots of different programming tasks. The C++ library

Output:

602620988 1366704749 631888070

Random Numbers - Example

Generate random numbers in a specific ranges

#include <iostream> using namespace std; int main() {

> srand(time(0)); // Seed the random number generator cout << randomNum;</pre>

return 0;

int randomNum = rand() % 100; // Generate a number between 0 and 99

Random Numbers - Example

Generate random numbers in a specific ranges

#include <iostream> using namespace std; int main() {

srand(time(0)); // Seed the random number generator

return 0;

cout << "Random number (0-99): " << rand() % 100 << "\n";</pre> cout << "Random number (1-100): " << (rand() % 100) + 1 << "\n";</pre> cout << "Random number (20-50): " << (rand() % 31) + 20 << "\n";

- A flowchart is a picture (graphical representation) of the problem-solving process.
- A flowchart gives a step-by-step procedure for solution of a problem.
- Using flowcharts can show the sequence and logic of each step before writing a computer program.
- Even people with little programming knowledge can understand flowcharts.

Flowchart Elements

Purpose
Used at the beginning and end of the algorithm to show start and end of the program.
Indicates processes like mathematical operations.
Used for denoting program inputs and outputs.
Stands for decision statements in a program, where answer is usually Yes or No.
Shows relationships between different shapes.

Flowchart - Example1

Draw a flowchart to represent the process of calculating the summation of two numbers

Draw a flowchart to represent the process of calculating the average of two numbers

Flowchart

types of diagrams, including flowcharts. Through <u>draw.io</u> or <u>app.diagrams.net</u> can access to the app to create flowcharts.

File Edit View Ar	range Extras Help	Unsaved changes. Click h	ere to save. 🕁			-ېٰ- L Share
<u>□</u> - 55% - € €		8 🔌 🔼 🖬 🛛	$\rightarrow =$	• • III •		::□ ≈
Search Shapes Q					Diagram	Style ×
					View	
Scratchpad ? +					🗸 Grid	10 pt 🊔 📃 🖉
· · · · · · · · · · · · · · · · · · ·					🗸 Page View	
Drag elements here			<u> </u>		Background	Change
					Background C	Color
 General 		1			Shadow	Sketch
Text Heading					Options	
$\Box \cap \Box \land \Box$					Connection A	rrows
			Click to go back, bo	ld to see history	Connection P	oints
					🗸 Guides	
					Paper Size	
ĽЦ¬́хD					A4 (210 mm x 29	97 mm) 🗸 🗸
			\sum		● Portrait ○	Landscape
					Edit	Data
+ Moro Shapoo					Clear D	efault Style
+ More Shapes	Page-1 ^ +					

"draw.io" is a popular online diagramming tool that allowed users to create various

Flowchart to C++

}

#include<iostream> using namespace std;

```
/*we need to give only one input
 to program i.e., inches*/
```

float inch;

```
float cm;
cout<<"Enter inches:"<<endl;</pre>
cin>>inch;
```

```
cm = 2.54* inch;
cout<<"Equivalent peso is:"<<cm;</pre>
```

return 0;

