
L e c t u r e 4

Programming Fundamentals

Tishk International University
Cybersecurity Department
Course Code: CBS 113

hemin.ibrahim@tiu.edu.iq
Hemin Ibrahim, PhD
Fall 2024

Control Statement

Tishk International University
Cybersecurity Department
Course Code: CBS 113

hemin.ibrahim@tiu.edu.iq
Hemin Ibrahim, PhD
Fall 2024

Outline
• Rational Operations
• Control Structures
• If Statements
• The IF Block Statement
• Nested IF
• Flags
• Logical Operators
• Switch

Objectives
By the end of this lesson, you will be able to

• Learn to use different control structures, like if statements, nested if, flags, logical

operators, and switch statements, according to the complexity of the problem.

• Apply rational operations and control structures to solve problems logically.

• Develop versatility in choosing and implementing control flow structures such as if

statements, nested if, flags, logical operators, and switch statements.

• Gain proficiency in using conditional statements for effective decision-making,

handling various conditions and scenarios in programming

Programming

Programming

In this lecture, we will cover the essential control structures
for making decisions and managing program flow

Relational Operators
• Relational operators compare numeric and char values to check if one is greater than,

less than, equal to, or not equal to another.
• Computers excel at both calculations and value comparisons.
• Comparisons are essential for tasks like analyzing sales figures, calculating profit and

loss, checking numerical ranges, and validating user input.

Relational Operators

Control Structures

• We know that program is executed sequentially, unless we give different
instructions.

• for the program to not execute sequentially, we need to use a control structure.
• Control Structures provide two basic functions: selection and repetition

(looping)

Control Structures

• A Selection control structure is used to choose among alternative courses of action.
• There must be some condition that determines whether or not an action occurs.
• C++ has a number of selection control structures:

• if
• if…. else
• if … else … if
• switch

Control Structures

If statement

• The if statement can cause other statements to execute only under certain
conditions.

• The if selection statement is a single-selection statement
• It selects or ignores a single statement (or block of statements) depending on the

condition
• Modifies the order of the statement execution.

If statement - Example

In the flowchart, the action “Wear a coat” is performed only when it is cold outside. If
it is not cold outside, the action is skipped. The action is conditionally executed
because it is performed only when a certain condition (cold outside) exists.
Here are some other examples:
• If the car is low on gas, stop at a service station and get gas.
• If it’s raining outside, go inside.
• If you’re hungry, get something to eat.

If statement - Example

If statement - Example

If statement in C++

• Evaluate an expression (condition) and directs program
execution depending on the result of that evaluation.

• If the expression evaluate as TRUE, statement is executed, if
FALSE, statement is not executed, execution then passed to
the code follows the if statement, that is the next_statement.

• So, the execution of the statement depends on the result of
expression.

If statement in C++

No semicolon goes here

semicolon goes here

Example #1

Write a C++ program that asks user to input a number, then check the number is positive?

Example #2

Example #3

Example #3 - Flowchart

If statement - Example

 Executed sequentially Using control structure

The if Block Statement

If you want an 'if' statement to execute a group of statements, use a compound
statement enclosed in '{' and '}'. It allows you to control the execution of multiple
statements or control structures

The if Block Statement - Example

??

If … else

The if/else Statement

The if/else statement will execute one group of statements if the expression is true, or
another group of statements if the expression is false.

With an if statement, if the expression is true, specific statements are executed; otherwise, a
different set of statements is executed

The if/else Statement

The if/else Statement

The if/else Statement - Example

Write a C++ program to check a given integer is even or odd.

The if/else Statement

The if/else if statement simplifies testing multiple conditions, often done more
efficiently than using nested if/else statements

The if/else/if Statements - Example#1

The if/else/if Statements - Example#2

The if/else/if Statements - Example#3

Nested if Statements

To test more than one condition, an if statement can be nested inside another if
statement.

Nested if Statements - Example

Logical Operators

Logical operators connect two or more relational expressions into one or reverse the

logic of an expression.

Logical Operators - Example 1 (&&)

and

Logical Operators - Example 2 (&&)

Create a C++ program that determines if a person is eligible to vote. The program should check if
the person is 18 years or older and they are a citizen.

Logical Operators - AND (&&)

Logical Operators - Example OR (||)

Develop a C++ program that determines if a person is eligible for a discount. Check if the person
is a senior citizen (age 60 or above) or a student.

Logical Operators - Example OR (||)

Logical Operators - OR (||)

Logical Operators - Example (&& and ||)

Flags and Integer Flags

• A flag is a variable used to signal the existence of a condition in a
program.

• Flags are usually Boolean or integer variables.
• When the flag is set to false, it signifies that the condition does not exist.
• Setting the flag to true indicates the presence of the specified condition.

Flags and Integer Flags - Example 1

Flags and Integer Flags - Example 2

Logical Operators - NOT (!)

Logical Operators - NOT (!)

Comparing Characters

Blocks and Variable Scope

The scope of a variable is limited to the block in which it is defined. C++ allows you to

create variables almost anywhere in a program.

The switch Statement

• Switch statement: Determines program
making a decision based on a value or
expression.

• Branching: Occurs when one part of the
program leads to the execution of another
part.

• If/else if statement: Allows branching into
various paths based on true conditions in a
series of tests.

• Switch vs if/else if: Switch tests integer
expression values for branching, while if/
else if tests relational conditions.

switch(value){
 case Choice1:
 Statement1;
 break;
 case Choice2:
 Statement2;
 break;
 case Choice-n:
 Statement-n;
 break;
 default:
 default statement;
}

The switch Statement

The switch Statement - Example 1

The switch Statement - Example 2

