
Introduction to Microprocessor
Technology

• Microprocessor History and Evolution

• Microprocessor-based Systems

• Inside The Microprocessor

• Organization of a microprocessor-based System

• Memory

• Memory Map and Addresses

• Decimals, Binary, Hex and Binary Coded decimal (BCD)

1
Introduction to Microprocessor Technology

Microprocessor history and evolution

Microprocessor:

• Also known as Central Processing Unit (CPU), is a complete
computation engine that is fabricated on a single chip.

• The first microprocessor was the Intel 4004, introduced in 1971.
The 4004 was not very powerful. All it could do was add and
subtract, and it could only do that with 4 bits at a time.

• Prior to the 4004, engineers built computers either from collections
of chips or from discrete components (transistors wired one at a
time). The 4004 powered one of the first portable electronic
calculators.

• Intel 4004 microprocessor

Microprocessor history and evolution

Microprocessor?

• Microprocessor is a controlling unit of a micro-computer,
fabricated on a small chip capable of performing ALU (Arithmetic
Logical Unit) operations and communicating with the other devices
connected to it.

• The word Microprocessor comes from the combination of micro
and processor.

• Processor: In this context, processor means a device that performs
certain operations on the numbers, specifically binary numbers, 0’s
and 1’s.

• Micro is a new addition: In the late 1960’s, processors were built
using discrete elements but were too large and too slow. In the early
1970’s the size became several thousand times smaller, and the
speed became several hundred times faster. The “Micro” Processor
was born.

Microprocessor history and evolution

What is a Microprocessor?

• The microprocessor is a programmable device that takes in
numbers in binary, performs on them arithmetic or logical
operations according to the program stored in memory and then
produces other numbers as a result.

Programmable device:

• The microprocessor can perform different sets of operations on the
data it receives depending on the sequence of instructions supplied
in the given program.

Instructions:

Each microprocessor is designed to execute a specific group of
operations. This group of operations is called an Instruction Set. This
instruction set defines what the microprocessor can and cannot do.

Microprocessor history and evolution

Microprocessor Takes in:

The data that the microprocessor manipulates must come from
somewhere. It comes from what is called “input devices”.

• These represent devices such as a keyboard, a mouse, switches, and
the like.

Microprocessor processes Numbers: The microprocessor has a very
narrow view on life. It only understands binary numbers (0 and 1).

• The microprocessor recognizes and processes a group of bits
together. This group of bits is called a “word”.

• The number of bits in a Microprocessor’s word, is a measure of its
“abilities”.

Microprocessor history and evolution

Bits, Bytes and Words:

• The earliest microprocessor (the Intel 8088, 8085 and Motorola’s
6800) recognized 8-bit words which equals to 1 Byte.

• To process data larger than 8-bit they have to break them into 8-
bit pieces and processed each group of 8-bits separately.

• Later microprocessors (8086 and 68000) were designed with 16-bit
words.

• A group of 8-bits were referred to as a “half-word” or “byte”. A
group of 4 bits is called a “nibble”. Also, 32-bits groups were given
the name “long word”.

• Today, all processors manipulate at least 32 bits at a time and there
exists microprocessors that can process 64, 80, 128 bits

Microprocessor history and evolution

Arithmetic and Logic Operations:

Every microprocessor performs arithmetic operations such as “add”
and “subtract” as part of its instruction set.

• Most microprocessors will have operations such as multiply and
divide. Some of the newer ones will have complex operations such
as square root.

• In addition, microprocessors have logic operations as well. Such as
AND, OR, XOR, shift left, shift right, etc.

• Again, the number and types of operations define the
microprocessor’s instruction set and depends on the specific
microprocessor.

Microprocessor history and evolution

Read/Write from/to Memory :

what is memory? Memory is the location where information is kept
while not in current use.

• Memory are built using different technologies as digital storage
devices.

• Also, in most kinds of memory, these storage devices are grouped
into groups of 8. These 8 storage locations can only be accessed
together. So, one can only read or write in terms of bytes to and
from memory.

Microprocessor history and evolution

• Memory is usually measured by the number of bytes (group of 8
bits) it can hold. It is measured in Kilobytes (KB), Megabytes (MB)
Giga (GB), Tera (TB), etc.

• A Kilobyte (KB) in computer language is 𝟐𝟏𝟎 = 𝟏𝟎𝟐𝟒 𝒃𝒚𝒕𝒆𝒔 . A
Megabyte (MB) is 1024 KB (𝟐𝟐𝟎 𝒃𝒚𝒕𝒆𝒔), A Gigabyte is 1024 MB
(𝟐𝟑𝟎 𝒃𝒚𝒕𝒆𝒔) and so on .

Microprocessor produces/outputs :

• For the user to see the result of the execution of the program, the
results must be presented in a human readable form.

• The results must be presented on an output device. This can be the
monitor, a paper from the printer, a simple LED or many other
forms.

Microprocessor-based System
Microcomputer

• Microcomputer is a computer with a microprocessor as its CPU
and other key components such as System memory, I/O etc. with
system busses providing data communications amongst all the
components.

Inside The Microprocessor

Microprocessor key components

• Microprocessor consists 3 key components of Arithmetic and
Logical Unit (ALU) , Register Array, and a Control Unit.

Arithmetic and Logical Unit (ALU): Performs arithmetical and
logical operations on the data received from the memory or an input
device.

Register Array: consists of temporary memory locations registers
identified by letters like B, C, D, E, H, L and Accumulator.

Control Unit: controls the flow of data and instructions within the
computer’s microprocessor.

Inside The Microprocessor

Memory

• Memory stores information such as instructions and data in binary
format (0 and 1). It provides this information to the microprocessor
whenever it is needed.

• Usually, there is a memory “sub-system” in a microprocessor-based
system. This sub-system includes:

1. The registers inside the microprocessor

2. Read Only Memory (ROM): used to store information that does
not change.

3. Random Access Memory (RAM):used to store information
supplied by the user. Such as programs and data.

Inside The Microprocessor

Memory Map and Addresses

• The memory map is a picture representation of the address range
and shows where the different memory chips are located within the
address range.

Inside The Microprocessor

Program Execution

• To execute a program the user enters instructions in binary format
into the memory.

• The microprocessor then reads these instructions and whatever data
is needed from memory, executes the instructions and places the
results either in memory or produces it on an output device.

The three cycle instruction execution model:

• To execute a program, the microprocessor “reads” each instruction
from memory, “interprets” it, then “executes” it.

• In a more technical way, microprocessor fetches each instruction,
decodes it, then executes it.

• This sequence is continued until all instructions are performed.

Inside The Microprocessor

Machine Language

• To decodes the type of operation required by microprocessor,
special numbers (binary bits stream) are needed to form the part of
the microprocessor’s vocabulary (language base).

• Therefore, for 8-bit microprocess the maximum number word
combinations or instructional opcode that can be defined is 28 =
256

• Number of bits that form the “word” of a microprocessor is fixed
for that particular processor.

• However, in most microprocessors, not all of these combinations are
used. Certain patterns are chosen and assigned specific meanings.

• Each of these patterns forms an instruction for the microprocessor.

• The complete set of patterns makes up the microprocessor’s
machine language.

Inside The Microprocessor

The Intel 8085 Machine Language

• The 8085 (from Intel) is an 8-bit microprocessor.

• The 8085 uses a total of 246-bit patterns to form its instruction set.

• These 246 patterns represent only 74 instructions.

• The reason for the difference is that some (actually most)
instructions have multiple different formats.

• Because it is very difficult to enter the bit patterns correctly, they are
usually entered in hexadecimal instead of binary.

• For example, the combination 00111100 which translates into
“increment the number in the register called the accumulator”, is
usually entered as 3C.

Inside The Microprocessor

Assembly Language

• Entering the instructions using hexadecimal is quite easier than
entering the binary combinations.

• However, it still is difficult to understand what a program written in
hexadecimal does.

• So, each microprocessor company defines a symbolic code for the
instructions. These codes are called “mnemonics”.

• The mnemonic for each instruction is usually a group of letters that
suggest the operation performed.

Inside The Microprocessor

Assembly Language

• Using the same example from before, 00111100 translates to 3C in
hexadecimal (OPCODE)

• Its mnemonic is: “INR A”.

• INR stands for “increment register” and A is short for
accumulator.

• Another example is: 10000000, which translates to 80 in
hexadecimal.

• Its mnemonic is “ADD B”.

• “Add register B to the accumulator and keep the result in the
accumulator”.

Inside The Microprocessor

Assembly Language

• It is important to remember that a machine language and its
associated assembly language are completely machine dependent.

• In other words, they are not transferable from one microprocessor to
a different one.

• For example, Motorola has an 8-bit microprocessor called the 6800.

• The 8085-machine language is very different from that of the 6800.
So is the assembly language.

• A program written for the 8085 cannot be executed on the 6800 and
vice versa.

Inside The Microprocessor

“Assembling” The Program

• How does assembly language get translated into machine language?

• There are two ways:

• 1st there is “hand assembly”.

• The programmer translates each assembly language instruction into
its equivalent hexadecimal code (machine language). Then the
hexadecimal code is entered into memory.

• The other possibility is a program called an “assembler”, which
does the translation automatically.

Introduction to the Hexadecimal System

What is Hexadecimal?

• Is a base-16 number system, meaning it uses 16 distinct symbols: 0–
9 and A–F (where A=10, B=11, ..., F=15).

• Example: 1𝐹𝐻 or 1𝐹16 represents hex number that can be converted
to base 10 (decimal) as follows.

Why Use Hexadecimal

• Is a compact Representation: Hex simplifies long binary strings. For
example, 101011112 becomes 𝐴𝐹16 or 𝐴𝐹𝐻

• Alignment with Binary: Each hex digit corresponds to 4 binary
digits (nibble), making conversions straightforward.

𝟏𝑭𝟏𝟔 = 𝟏 × 𝟏𝟔𝟏 + 𝟏𝟓 × 𝟏𝟔𝟎 = 𝟑𝟏𝟏𝟎

Introduction to the Hexadecimal System

Hexadecimal conversion Table:

Introduction to the Hexadecimal System

Converting Between Hexadecimal and Decimal

Hexadecimal to Decimal:

Multiply each digit by 16𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 (right to left, starting at 0). Example:
convert

Convert 2𝐴𝐹16 to decimal

Decimal to Hexadecimal:

• Divide the decimal number by 16 repeatedly; record remainders
(convert 10–15 to A–F).

• Example: Convert 25510 to hex.

2𝐴𝐹16 = 2 × 162 + 10 × 161 + 15 × 160 = 1081510

25510 = 255 ÷ 16 = 15 𝑟𝑒𝑚𝑖𝑛𝑑𝑒𝑟 15 →𝐹𝐹16

Introduction to the Hexadecimal System

Hexadecimal to Binary:

• Each hex digit corresponds to 4 binary digits. Example: Convert
3𝐹16 to binary.

Binary to Hexadecimal:

• Group binary digits into sets of 4 (starting from the right) and
convert each group to hex.

• Example: Convert 11010110𝐹16 to hex.

Introduction to the Hexadecimal System

Practical Uses of Hexadecimal:

• Memory addresses are often represented in hex for compactness.

• Hex is used in web design to represent RGB colors. Example:
#FF5733 = Red=FF, Green=57, Blue=33.

• Hex dumps display raw binary data in a human-readable format.
Example: Debugging memory or file contents.

• Hex simplifies the representation of binary-coded data in
microprocessors and communication protocols.

• Compactness: Reduces long binary strings (e.g., 8 binary digits → 2
hex digits).

• Readability: Easier to interpret than binary and Fits neatly with
bytes (2 hex digits = 1 byte).

Inside The Microprocessor

Intel 8085 architecture

• Instruction with a Memory Address

8085 Pins Description

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

