

Outline

- What is MySQL?
- MySQL Key Benefits
- Data Types in MySQL
- Basic Database Operations in MySQL
 - Create Database and Activate the Database
 - Create Table
 - Alter Table (Add a Column, Drop a Column, Modify a Column)

What is a MySQL?

- MySQL is the world's most popular open-source database management system.
- MySQL is an <u>SQL-based relational database</u> designed to store and manage structured data.
- MySQL Workbench is a graphical tool for working with MySQL servers and databases.

MySQL Key Benefits

- Ease of Use Installing MySQL and managing a database in MySQL is easy.
- Reliability MySQL has been tested and used in many well-known companies. Many organizations depend on MySQL because of its reliability.
- Scalability MySQL's native replication architecture enables organizations, including Facebook, Netflix, and Uber, to scale applications to support tens of millions of users or more.

MySQL Key Benefits

- **Performance –** MySQL is a proven high-performance DBMS.
- **High Availability** MySQL delivers a complete set of replication technologies for high availability and disaster recovery.
- **Security** Data security entails both data protection and compliance with industry and government regulations.
- **Flexibility** Flexibility refers to the ability to adapt to changing business needs, data and requirements.

Data Types in MySQL

- Each column in a database table must have:
 - Column name
 - Data type
- When you create a table, you need to specify the name of each column and decide on the type of data stored in that column.

Numeric Data Types

Data Type	Description	Storage (Bytes)	
INT	A standard integer	4 Bytes	
DECIMAL	A fixed-point number	4 Bytes	
NUMERIC	A fixed-point number	4 Bytes	
FLOAT	A floating-point number	4 Bytes	
DOUBLE	A floating-point number that stores larger values than FLOAT	8 bytes	

String Data Types

Data Type	Description	Number of Characters
CHAR (M)	A fixed-length string	M → 0-255
VARCHAR (M)	A variable-length string	M → 0-255
TEXT (M)	A long string	M → 0-65,535

Data Type	Description	Storage (Bytes)	
DATE	A date	3 Bytes	
DATETIME	A date and time combination	8 Bytes	
TIME	A time	3 Bytes	
YEAR	A year in four-digit format	1 Byte	
TIMESTAMP	A timestamp	4 Bytes	

(Date and Time) Data Types

- **DATETIME** data type \rightarrow is used to store both date and time information. **Example** \rightarrow 2025-02-10 11:20:43
 - **DATETIME** is appropriate for storing information about a specific date and time, such as the date and time an event occurs or a record is created.
- **TIMESTAMP** data type \rightarrow also stores both date and time information.
 - TIMESTAMP automatically updates the value to the <u>current date and</u> <u>time</u> when a new record is inserted or an existing record is updated, making it useful for tracking changes in your data.

SQL Operations

- SQL commands are categorized into four categories:
 - DDL Data Definition Language
 - DML Data Manipulation Language
 - DCL Data Control Language
 - TCL Transaction Control Language

Create Database

• The **CREATE DATABASE** statement is used to create a new database.

Syntax:

CREATE DATABASE <database_name>;

Example:

CREATE DATABASE University;

Contropy of the experimentation of the exp

Drop Database

• The **DROP DATABASE** statement is used to remove an existing database.

Syntax:

DROP DATABASE <database_name>;

Example:

DROP DATABASE University;

Create Table

 The CREATE TABLE statement is used to create a new table in a database.

• Syntax:

CREATE TABLE table_name (Column_name₁ datatype₁, Column_name₂ datatype₂, ..., Column_name_n datatype_n, (Integrity_Constraint₁), ..., (Integrity_Constraint_n));

Integrity Constraints

- Integrity Constraints are rules to ensure that the data in the database is accurate, consistent and reliable.
- Two important integrity constraints:
 - \circ primary key (col₁, ..., col_n)
 - **foreign key** (*col_m*, ..., *col_n*) **references** table_name (primary_col)
- $^{\circ}$ SQL prevents any update to the database that violates an integrity constraint.

Create Table

Create Table Student

(stu_ID int, stu_name varchar(30), Email varchar(40), primary key (stu_ID)

);

- A table named Student is created. The table has <u>three columns</u>. Column names and their datatypes are specified.
- According to this syntax, this table has a primary key, which is the student ID.

stu_ID	stu_Name	Email		

T	
E CADIL	2008

Create Table (Example of Foreign Key)

Create Table Depa	rtment	Create	Create Table Student				
(deptName budget primary key (d	varchar(70), int, leptName)	(st st Er m	(stu_ID int, stu_name varchar(30), Email varchar(40), major varchar(70), primary key (stu_ID), foreign key (major) references Department(deptName				
););				
deptName	budget	stu_ID	stu_name	Email	major		
IT	7000	1	Leonardo	leo@gmail.com	Dentistry		
Civil Eng.	8000	2	Charles	charles@gmail.com	IT		
Dentistry	12000	3	Sandy	sandy@gmail.com	Dentistry		

Drop Table

• The **DROP TABLE** statement is used to remove an existing table from a database.

Syntax:

DROP TABLE <table_name>;

Example:

DROP TABLE Student;

Alter Table

- The ALTER TABLE statement is used to:
 - Add columns to an existing table.
 - **DROP columns** from an existing table.
 - Modify columns of an existing table.
 - Rename columns/tables.
- The ALTER TABLE statement is also used to:
 - Add various constraints in an existing table.
 - **Drop** various constraints from an existing table.

Alter Table (Adding New Column)						
 ADD statement is used to add column(s) to an existing table. 						
Syntax: ALTER TABLE <table_name></table_name>						
ADD column_name datatype;						
Example:	Stu_ID	Stu_name	Email			
ALTER TABLE Student						
ADD DateOfBirth year;	Stu_ID	Stu_name	Email	DateOfBirth		

Alter Table (Dropping an Existing Column)

• **DROP COLUMN** statement is used to delete column(s) from an existing table.

Syntax: ALTER TABLE <table_name> DROP COLUMN column_name;

Example:	Stu_ID	Stu_name	Email	DateOfBirth		
ALTER TABLE Student						
DROP COLUMN Email;	Stu_ID	Stu_name	DateOf	Birth		

