

[PT 309]

Dr. AMINU A. IBRAHIM (BPT, MPTh, Ph.D)

LECTURE NOTES FOR 3rD GRADE BPT STUDENTS

SPRING SEMESTER 2024-2025

DEPARTMENT OF PHYSIOTHERAPY, FACULTY OF APPLIED HEALTH SCIENCES

TISHK INTERNATIONAL UNIVERSITY

2024/2025

HYPOTHESIS FORMULATION AND TESTING, AND PROBABILITY DISTRIBUTION

LECTURE OUTLINE

- Learning objectives
- Hypothesis
 - Definition
 - Types of hypothesis
 - Hypothesis testing
- Probability distribution
 - Nominal
 - Skewed
- Review
- Reading resources/additional materials

LEARNING OBJECTIVES

- Define and discuss different types of hypothesis.
- Formulate hypotheses for hypothesis testing.
- Conduct hypothesis tests using appropriate statistical methods.
- Understand various types of probability distributions (e.g., normal, binomial).

Hypothesis

What is hypothesis?

- A hypothesis is a testable statement or assumption about the relationship between variables that can be investigated using research methods & statistical analysis.
- Provides a clear direction for research & guides statistical analysis.
- It defines what the study aims to prove or disprove
- Example: "Patients who receive education & exercise therapy for knee OA will show greater improvement in pain & function compared to those who receive education only"

Hypothesis

Types of hypothesis

Alternative hypothesis (H₁)

- Definition: states that there is an effect or difference between groups or variables.
- Example:
 - "Physiotherapy treatment **improves** knee function in patients with ACL injuries"
 - "There will be a significant difference in knee pain between physiotherapy treatment and paracetamol in patients with knee OA"

Null hypothesis (H₀)

- Definition: states that there is no effect or no difference between groups or variables.
- It is the opposite of the null hypothesis & assumes any observed effect is due to chance.
- Example: "
 - "Physiotherapy treatment will have no significant effect in knee function before & after treatment in patients with ACL injuries"
 - "There will be **no significant difference** in knee function between physiotherapy treatment and paracetamol in patients with knee OA"

Hypothesis

Formulating hypothesis

Step 1: identifying the research questions (define research question)

- What are you trying to investigate?
- Example:
 - "Does physiotherapy improve mobility in elderly patients with hip fractures?"
 - "Is physiotherapy treatment more effective at improving knee pain compared to paracetamol in patients with knee OA?"

Step 2: Conduct a literature review (search)

- Identify gaps in knowledge, trends, and evidence that guide hypothesis formulation.
- Example:
 - Literature shows mixed results regarding the efficacy of physiotherapy on post-fracture rehabilitation among elderly patients.

Hypothesis

Formulating hypothesis Step 3: Define variables

- Independent Variable (IV): The factor you manipulate
- Example:
 - Type of physiotherapy treatment (e.g., strength exercises, balance training).
 - Paracetamol
- Dependent Variable (IV): The outcome you measure
- Example:
 - Mobility or gait speed improvement (e.g. 10-Meter Walk Test, TUG)
 - Knee pain: (e.g. Knee Injury and Osteoarthritis Outcome Score [KOOS]), VAS

Step 4: Develop the hypothesis

- Example:
 - "Elderly patients with post-fracture receiving balance training + strength exercise will show greater improvement in mobility compared to those receiving only strength exercise".

Hypothesis

Hypothesis testing process

Step 1: State the hypothesis

- H₀: No effect or difference
- H₁: There is an effect or difference

Step 2: Choose significance level (alpha [α])

Common value: $\alpha = 0.05$ (5% risk of a Type I error)

Step 3: Select the statistical test

- Choose based on <u>data type & study design</u>
 - T-test: for comparing two groups.
 - ANOVA: for comparing more than two groups.
 - Chi-square: for categorical data
 - Example:
 - A t-test might be used to compare mobility improvement between two physiotherapy interventions.

Hypothesis

Hypothesis testing process

Step 5: Collect and analyze data

- Gather data from participants & use the appropriate test to analyze results.
- H₁: There is an effect or difference

Step 6: Make a decision

- **Reject H**₀ (failed to accept the null hypothesis) if p-value $< \alpha$ (evidence supports H₁).
- **Fail to reject H**₀ if p-value $\geq \alpha$ (insufficient evidence for H₁).

Example:

Hypothesis: There will be no significant difference in mobility between balance + strength exercise and strength in elderly patients with post-fracture after 8 weeks treatment Alpha level: 0.05 (P < 0.05)

Test statistics: Independent t-test

Observed t-value and P-value for mobility score: t = 25.815, P = 0.001

Decision: Since the observed P-value is less than 0.05 Alpha level, I therefore failed to accept the null hypothesis (reject H_0)

Hypothesis

Type I Error (False positive)

- Rejecting H₀ when it is actually true (incorrectly claiming a result exists).
- This can be problematic, especially in medicine or legal systems.
- Example:
 - A medical test wrongly detects a disease in a healthy person.
 - Concluding that no treatment improves mobility when it doesn't.

Type II Error (False negative)

- Failing to reject H₀ when it is false (missing a real effect).
- This could be harmful, for example, failing to diagnose a treatable disease.
 - Example:
 - A medical test failing to detect a dx when actually present.
 - Failing to detect a significant improvement in mobility from physiotherapy when it actually exists.

Hypothesis

Errors associated with results of experiment

Type I and Type II Errors					
Reality					
		True	False		
Measured	True	Correct	False Positive		
	False	False Negative	Correct		

Hypothesis

Probability value (P-value)

What is P-value?

- A p-value is a number describing the likelihood of obtaining the observed data under the H₀ of a statistical test.
- Provide the smallest level of significance at which the H₀ would be rejected.
- A smaller p-value means stronger evidence in favor of the alternative hypothesis.
- Often set at 0.05, indicating there is less than a 5% probability the null is correct.
 Interpretation:
- When P < 0.05: Reject H_0 (statistically significant result).
- When $P \ge 0.05$: Fail to reject H_0 (no statistically significant result).

Example:

If the p-value for a t-test comparing two physiotherapy treatments is 0.03, the H₀ is rejected & concluded that the treatments significantly differ in effectiveness.

Probability distribution

Recap on descriptive statistics

- Descriptive statistics are concerned with describing the characteristics of frequency distributions.
- Where is the center?
- What is the range?
- What is the shape [of the distribution]?

Frequency Table Test Scores

- Observation	Frequency	What is the range of test scores?			
(scores)	(# occurrences)	A: 30 (95 minus 65)			
65	1				
70	2	When calculating mean, one must divide by what number?			
75	3				
80	4	A: 16 (total # occurrences)			
85	3				
90	2				
95	1				

Probability distribution

Recap on descriptive statistics

Probability distribution

Normally distributed curve

- Also known as a Gaussian distribution, is a bell-shaped curve that represents a normal distribution in statistics.
- The bell-shaped means the curve rises to a peak at the mean & tapers off symmetrically toward both extremes (left & right).
- Most of the data (i.e. mean, median, & mode) coincide at the center of the curve.
- Mean = Median = Mode

Probability distribution

Normally distributed curve

Examples of normal distributed data

Probability distribution

Normally distributed curve

Empirical rule

- Also known as the 68 95 99 rule, states that for normal distributions;
 - About 68% of data falls within 1 SD of the mean
 - About 95% of data falls within 2 SD of the mean
 - About 99.7% of data falls within 3 SD of the mean

Standard deviation (SD)

- A measure of how spread out or how much the values in a data set vary from the average (mean).
- Low SD means the values are close to the mean, so the data is less spread out.
- **High SD** means the values are more spread out from the mean, showing more variation in the data. It is not reliable.

Probability distribution

Normally distributed curve

Probability distribution

Skewed distribution

- A probability distribution in which the data is not symmetrically distributed & is unevenly spread to one side of the mean.
- One tail ("skewed" side) is longer or more spread out than the other, creating an asymmetry.
- It can be:
 - Right-skewed (positively skewed) distribution
 - The right tail (higher values) is longer or more stretched out than the left tail.
 - Mode>Medium>Mean
 - Left-skewed (negatively skewed) distribution
 - The left tail (lower values) is longer or more stretched out than the right tail.
 - Mean < Medium < Mode</p>

Probability distribution

Skewed distribution

Probability distribution

Skewed distribution

Probability distribution

Normality assessment of data (using SPSS)

1. Visual methods

- Using methods like histogram & Boxplots
- What to check:
 - Symmetry (bell-shaped curves)
 - Extremes points

NB: Presence of symmetrical, bell-shaped curves, & absence of extremes points suggest normally distributed data

2. Statistical methods

1. Kolmogorov-Smirnov Test

- Use for larger sample size \geq 50
- P > 0.05 = suggest normally distributed data as not significant variations in the sample.

2. Shapiro-Wilk Test

- Use for small sample size \leq 50, though can be also use for large sample
- P > 0.05 = suggest normally distributed data as not significant variations in the sample.

OTHER READING SOURCES

TEXT

- 1. Kumar, R. (2011). Research methodology: A step-by-step guide for beginners (3rd ed.). Sage Publications.
- 2. Kothari, C. R. (2019). Research methodology: Methods and techniques (4th ed.). New Age International.
- 3. Walliman, N. (2011). Research methods: The basics (1st ed.). Routledge.

THANKS FOR LISTENING

Tishk International University