Research Methodology

[PT 309]

Dr. AMINU A. IBRAHIM (BPT, MPTh, Ph.D)

LECTURE NOTES FOR 3rD GRADE BPT STUDENTS

SPRING SEMESTER 2024-2025

DEPARTMENT OF PHYSIOTHERAPY, FACULTY OF APPLIED HEALTH SCIENCES

TISHK INTERNATIONAL UNIVERSITY

2024/2025

POPULATION AND SAMPLING

LECTURE OUTLINE

- Learning objectives
- Population
- Sample
 - Probability sampling techniques
 - Non-probability sampling techniques
- Review
- Reading resources/additional materials

LEARNING OBJECTIVES

- Define population
- Define sample
- Understanding the different types of sampling techniques including advantages and disadvantages

COMMON STATISTICAL TERMS

Data

- Measurements or observations of a variable
- Example: pain levels measured on a scale of 1-10 before & after treatment. patient demographics such as age, gender, and weight.

Variable

- A characteristic or factor that is observed or manipulated
- Can take on different values
- Example: exercise therapy, manual therapy, range of motion, age, gender.
- Variable can be dependent or independent
- Dependent variable:
 - Variable that is measured as an outcome. It depends on the independent variable e.g. pain levels, range of motion, blood glucose levels
- Independent variable:
 - Variable often manipulated by the researcher, e.g. treatment

POPULATION

- A population is the larger group from which a sample is drawn in a study.
- Entire group or set of individuals, objects, or events that share a common characteristic & are the focus of a study
- Example:
 - All individuals with chronic knee pain in Erbil, Iraq
 - All undergraduate students in TIU
- In research, it is not practical to include all members of a population
- Thus, a sample (a subset of a population) is taken.

SAMPLE

- A subset or smaller group selected from a larger population for the purpose of conducting research.
- The sample is studied to make inferences or generalizations about the entire population.
- Sampling is used when studying the whole population is impractical, expensive, or time-consuming
- Example:
 - **Population:** All patients with chronic back pain in a Erbil city.
 - Sample: A group of 100 patients selected from different physiotherapy clinics in Erbil city.

Sampling methods

Defining the target population

- It is critical to the success of the research project to clearly define the target population.
- The population should be defined in connection with the objectives of the study.

Technical terminologies

Elements: Refers to an individual unit or member of the population being studied.

- Example
 - **Population**: All patients with knee OA in Physiotherapy clinic, Erbil Teaching Hospital
 - **Element**: A single patient with knee pain who is part of the study.
- Population: A collection of elements about which we wish to make an inference.
- Sampling units: Are nonoverlapping collections of elements from the population that cover the entire population
 - Example:
 - Unit 1: All patients attending physiotherapy sessions on Mondays
 - Unit 2: All patients attending physiotherapy sessions on Tuesdays etc..

Sampling methods

Sampling frame: Refers to the complete list or sets of all the elements in the population or sampling unit from which a sample can be drawn.

- Example
 - A list of patients' names, ID numbers, or appointment schedules who have been diagnosed with knee OA & are registered in the physiotherapy clinic, Erbil Teaching Hospital

Sample: A collection of sampling units drawn from a sampling frame.

Sampling error: Refers to the difference between the sample statistic (e.g., sample mean, sample proportion) & the corresponding population parameter (e.g., population mean, population proportion).

This error occurs because a sample is only a subset of the population & may not perfectly represent the entire population.

Errors can arises from:

- 1. Nonresponse bias
- 2. Sampling method bias
- 3. Smaller sample size

ORTHOTICS AND PROSTHETICS

Sampling methods

Sampling methods

Probability sampling method

- Each member of the population has a known, non-zero probability of being selected
- Key characteristics are random selection, equal opportunity, & unbiased.
- These help to ensure that the sample is representative of the entire population.
- Include the following methods:
 - 1. Random sampling,
 - 2. Systematic sampling,
 - 3. Stratified sampling, and
 - 4. Cluster sampling

Non-probability sampling method

- Members are selected from the population in some non-random manner.
- The sample may not be representative of the entire population.
- Key characteristics are non-random selection, potential bias, & convenience.
- Include the following methods:
 - 1. Convenience sampling,
 - 2. Judgmental or purposive sampling,

- 3. Quota sampling
- 4. Snowball sampling

Sampling methods

Random sampling

- Each member of the population has an equal and known chance of being selected.
- It is the purest form of probability sampling.
- Ensures that the sample is unbiased & is likely to be representative of the larger population, making the results more reliable & generalizable.
- The following ways can be used to achieve random sampling:
 - 1. Lottery using a piece of paper or flipping a coin
 - 2. Random number table
 - 3. A computer-generated random number generator (RNG)
 - 4. Drawing names from a hat
 - 5. Use of software tools e.g. SPSS

Draw from a hat Flipping a coin

Table	of Ran	dom N	umbers
61424	20419	86546	00517
90222	27993	04952	66762
50349	71146	97668	86523
85676	10005	08216	25906
02429	19761	15370	43882
90519	61988	40164	15815
20631	88967	19660	89624
20000	70722	16447	27022

SPSS generated Random numbers

RANDOM SAMPLING POPULATION

Sampling methods

Stratified sampling

- Probability sampling where the population is divided into distinct subgroups or strata based on a specific characteristic (e.g., age, gender, income, disease status).
- Then, random samples are drawn from each of these strata to ensure that each subgroup is adequately represented in the overall sample.
- Commonly used method that is superior to random sampling because it reduces sampling error.
- Example: In a study examining the effects of physiotherapy on knee OA, the population might consist of male & female patients of different age groups. The researcher could use stratified sampling as follows:
 - Stratum 1: Male patients with knee OA
 - Stratum 2: Female patients with knee OA
 - Stratum 3: Patients aged 50-60 years with knee OA
 - Stratum 4: Patients aged 61+years with knee OA
- Then, the researcher would randomly sample a proportion of individuals from each stratum (e.g., 10 males, 10 females, 10 patients aged 50-60, etc.) to ensure that each group is adequately represented in the final sample.

Sampling methods

Stratified sampling

Sampling methods

Systematic sampling

- Probability sampling where the researcher selects every n-th individual from a list of the population after choosing a random starting point.
- It's simpler & cost-effective than simple random sampling & can be more practical when dealing with large populations or databases.
- Example: assuming we want to survey 10 patients about their physiotherapy experience, & there
 are 100 patients in total.
 - Population size = 100 patients
 - Sample size = 10 patients
 - Sampling interval (k) = 100 ÷ 10 = 10
 - Random starting point: Suppose we randomly choose the 4th patient on the list.
- Then, we will select patients as follows: 4th, 14th, 24th, 34th, 44th, and so on, every 10th patient until you have your sample of 10.

Sampling methods

Systematic sampling

Sampling methods

- Cluster sampling
- Probability sampling where the population is divided into clusters (groups or subsets), & entire clusters are randomly selected to be included in the study.
- Unlike other probability sampling methods, the sampling unit is the whole cluster, not just individual elements.
- Population is divided into clusters based on a relevant characteristic (e.g., geographic location, organization, etc.), for example city, region, hospitals.
- Example: If we want to study the effectiveness of physiotherapy treatments across multiple clinics. The population consists of patients from 20 clinics in a city.
 - Step 1: Divide the clinics into clusters (20 clinics represent 20 clusters)
 - Step 2: Randomly select 5 clinics to participate in the study
 - Step 3: Choose all patients from the 5 selected clinics or randomly select a few patients from each of those clinics.
- One major disadvantage of this method is that it increases sampling error.

Sampling methods

Cluster sampling

OTHER READING SOURCES

TEXT

- 1. Kumar, R. (2011). Research methodology: A step-by-step guide for beginners (3rd ed.). Sage Publications.
- 2. Kothari, C. R. (2019). Research methodology: Methods and techniques (4th ed.). New Age International.
- 3. Walliman, N. (2011). Research methods: The basics (1st ed.). Routledge.

THANKS FOR LISTENING

Tishk International University