
L e c t u r e 5

Programming Fundamentals

Tishk International University
Cybersecurity Department
Course Code: CBS 113

hemin.ibrahim@tiu.edu.iq
Hemin Ibrahim, PhD
Fall 2024

Loops

Tishk International University
Cybersecurity Department
Course Code: CBS 113

hemin.ibrahim@tiu.edu.iq
Hemin Ibrahim, PhD
Fall 2024

Outline
• Increment and Decrement
• Intro to loops
• The while loop
• The for loop
• Break statement

Objectives
By the end of this lesson, you will be able to

• Apply increment/decrement operations and loop structures through hands-on

coding exercises.

• Write efficient and optimized code using the most suitable loop construct and

judicious use of increment/decrement operations.

• Enhance problem-solving skills by tackling diverse challenges with loops and

control flow mechanisms.

The Increment and Decrement Operators

"++" and "--" are operators that add and subtract 1 from their operands. To increment
a value means to increase it by one, and to decrement a value means to decrease it by
one.

These are two ways to increment the variable num
num = num + 1;
num += 1;

And num is decremented in both of the following statements:
num = num - 1;
num -= 1;

The Increment and Decrement Operators (cont.)

C++ has operators dedicated to increasing (++) and decreasing (--) variables.

The following statement uses the ++ operator to increment num:

num++; // Increment by One
num--; // Decrement by One

Postfix and Prefix Modes

Postfix Mode: (x++)
• Operator comes after the operand.
• Operand's value is used first, then it's incremented or decremented.
• The syntax for the postfix increment and decrement operators is x++ and x--,

respectively.

Prefix Mode: (++x)
• Operator comes before the operand.
• Operand is incremented or decremented first, then its updated value is used.
• The syntax for the prefix increment and decrement operators is ++x and --x, respectively.

The Difference Between Postfix and Prefix Modes

Combined Assignment

• Combined Assignment, also known as compound assignment, involves combining an
arithmetic operation with an assignment.

• It allows you to perform an operation (such as addition, subtraction, multiplication,
etc.) and assignment in a single statement.

Combined Assignment -Example

Introduction to Loops

A loop is a control structure that causes a statement or group of statements to repeat.
C++ has three looping control structures:
• while loop,
• do-while loop, and
• for loop.

The difference between these structures is how they control the repetition.

Introduction to Loops

• There are two main types of loops: condition-based and number-based loops.
• A condition-based loop runs as long as a specific condition is true, and the

number of iterations is uncertain. (While Loop)
• In contrast, a number-based loop repeats a fixed number of times. (For Loop)

Introduction to Loops

The while Loop

The while loop has two important parts:
1- an expression that is tested for a true or false value.
2- a statement or block that is repeated as long as the expression is
true.

The while Loop

The while Loop

The while Loop - Example #1

The while Loop - Example #2

Write C++ code that prints numbers from 1 to 10 and finds the square for each.

Output

Infinite Loops

In most situations, loops need a way to
stop. This means that something inside the
loop must eventually make the condition
false.
The below loop goes on forever because it
lacks a statement to modify the number
variable. With each test of the expression
counter <= 5, the number variable remains
at 1, causing an infinite loop.

Using the while Loop for Input Validation - Example #1

Output

Using the while Loop for Input Validation - Example #2

Output

Using the while Loop for Input Validation

Using the while Loop for Input Validation - Example #2

Output

The for Loop

• Count-controlled loops are so common that C++ provides a type of loop specifically

for them. It is known as the for loop.
• The for loop is suitable when a known number of iterations is required.
• Three essential elements define a count-controlled loop:

• Initialization: It starts with setting a counter variable to an initial value.
• Termination condition: The loop runs while the counter variable is less than or

equal to a maximum value; when false, the loop ends.
• Update: The counter variable is modified during each iteration, typically through

incrementing.

The for Loop

for (int counter =1; counter <= 10 ; counter++)

Control variable name

for keyword

Initial value

Required semicolon separator

Loop continuation condition

Control variable
increment

semicolon
separator

The for Loop

The for Loop - Example #1

Output

The for Loop - Example #2

Output

Other Forms of the Update Expression

• Vary the control variable from 1 to 100 in increments of 1.

• Vary the control variable from 100 down to 1 in increments of -1 (decrements of 1).

• Vary the control variable from 7 to 77 in steps of 7.

• Vary the control variable from 20 down to 2 in steps of -2.

• Vary the control variable over the following sequence of values: 2, 5, 8, 11, 14, 17, 20.

for (int i = 1; i <= 100; i++)

for (int i = 100; i >= 1; i--)

for (int i = 7; i <= 77; i += 7)

for (int i = 20; i >= 2; i -= 2)

for (int i = 2; i <= 20; i += 3)

Other Forms of the Update Expression

Creating a User Controlled for Loop

Write a C++ program that asks the user to input two numbers and print the numbers between
them.

Output

“break" Statement

•The break statement is used to prematurely exit a loop (such as a
for loop and while loop) when a certain condition is met.

•When encountered, the break statement terminates the nearest
enclosing loop.

•It's useful for avoiding unnecessary iterations and improving code
efficiency.

“break" Statement

