Tishk International University

Cybersecurity Department
Course Code: CBS 113

Programming Fundamentals ,

““‘V\ o ‘t. '\ _-:., .
B 9

x-~ -

[t
v P ;
3 :

AR ARE 4

>>)

Loops

Fall 2024

Hemin lbrahim, PhD
hemin.ibrahim@tiu.edu.iqg

e |Increment and Decrement

e Intro to loops

« The while loop

e« The for loop

e Break statement

By the end of this lesson, you will be able to

Apply increment/decrement operations and loop structures through hands-on

coding exercises.

Write efficient and optimized code using the most suitable loop construct and
judicious use of increment/decrement operations.
Enhance problem-solving skills by tackling diverse challenges with loops and

control flow mechanisms.

The Increment and Decrement Operators U,

"++" and "--" are operators that add and subtract 1 from their operands. To increment
a value means to increase it by one, and to decrement a value means to decrease it by

one.

These are two ways to increment the variable num
num = num + 1;
hum +=1;

And num is decremented in both of the following statements:

num = num - 1;
num -= 1;

The Increment and Decrement Operators (cont.)

C++ has operators dedicated to increasing (++) and decreasing (--) variables.

The following statement uses the ++ operator to increment num:

num++;
num-—-;

//
//

Increment by One

Decrement by One

Postfix and Prefix Modes

Postfix Mode: (x++)
e Operator comes after the operand.
e Operand's value is used first, then it's incremented or decremented.

e The syntax for the postfix increment and decrement operators is x++ and x--,
respectively.

Prefix Mode: (++x)

e Operator comes before the operand.

e Operand is incremented or decremented first, then its updated value is used.

e The syntax for the prefix increment and decrement operators is ++x and --x, respectivel

The Difference Between Postfix and Prefix Modes

#include <iostream>
using namespace std;

int main(){ €8] Microsoft Vi... — L]

int numl = 2;

nt num2 = 11; numl: 2
B 2- numz:
- 3- numl: 3
HUN2; 4- num2: 12
cout << :: : :: numl << endl: 5 - numl . 3
cout : num2 << endl;

6- num2: 13

cout '] - numl++ << endl;

cout << " . ++num2 << endl; 7_ numl . 4

cout << " 2 U numl << endl: 8_ num2 : 13

cout << " . 4 num2 << endl;

return 0;

}

Combined Assignment i),
w

e Combined Assignment, also known as compound assignment, involves combining an

arithmetic operation with an assignment.

e |t allows you to perform an operation (such as addition, subtraction, multiplication,

etc.) and assignment in a single statement.

Operator Example Usage Equivalent to
+= X += 5; X = X + 5;
-= y -= 2; y =Y - 2;
= z *= 10; z =z * 10;
/= b; a =a / b;

a /=
c

3;

3;

Combined Assighment -Example

#include <iostream>
using namespace std;
- 1nt main() {
int total = O0;

total += 10;

total += 5;

total -= 3;

cout << "Total: " << total << endl;
return 0;

Introduction to Loops

H -
0 -
= <

2008

A loop is a control structure that causes a statement or group of statements to repeat.
C++ has three looping control structures:

* while loop,
* do-while loop, and

* for loop.

The difference between these structures is how they control the repetition.

Introduction to Loops
V

e There are two main types of loops: condition-based and number-based loops.

e A condition-based loop runs as long as a specific condition is true, and the
number of iterations is uncertain. (While Loop)

e In contrast, a number-based loop repeats a fixed number of times. (For Loop)

Introduction to Loops

Now I have

no coinand I
can not buy

more candies.

have 8 more
and give me -

e)
1 candy ‘
—/

W

Take 10 coins. ‘ ake 1 coi

l

Take 1 coin
and give me
one more.

After buying 10 candies.

Thewhile Loop

The while loop has two important parts:
1- an expression that is tested for a true or false value.

2- a statement or block that is repeated as long as the expression is
true.

while (expression)

{

True statement;
Statement(s) statement;

// Place as many statements here
// as necessary.

False

The while Loop up

inta =1;
while (a < 4)

{

cout << "Hello World" << endl;

a ++:

}

Output

codesdope.com

The while Loop up

While Loop

3.b) If false
3.a) If true

1 2.

L} While (';ﬁi"ﬁ‘}:“@)

ol
4. 1

e

// body of the loop
/| statements to be executed

5 L, ipdation

}

> /| statements outside the loop oG

7 (2

The while Loop - Example #1

#include <iostream>
using namespace std;
~1int main(){

4

' ter=1
int counter = 1,; counter
¥
while (counter <= 5){
cout << "Hello" << endl; True
counter<= ¢
counter++; ///// | |
/ output "Hello" /
} False
l c:5| Microsoft V...
/ "v -/ o = counters] Hello
cout << a T h at ' S 4]_ l | e ; output "That's all counter = counter+ Hello
Hello
Hello
return O; o11e
; e That's all!

The while Loop - Example #2

Write C++ code that prints numbers from 1 to 10 and finds the square for each.

#include <iostream>

using namespace std; Output
int main() { Number Square
int 1 = 1; 1 1
cout << "Number \t\t Square" << endl,; 2 4
while (1 <= 10) { 3 9
cout << 1 << "\t\t\t\t" << 1 * 1 << endl; 4 16
1++; 5 25
} 6 36
7 49
return O; 8 64
} 9 81
10 100

In most situations, loops need a way to

stop. This means that something inside the
loop must eventually make the condition
false.

The below loop goes on forever because it
lacks a statement to modify the number
variable. With each test of the expression
counter <=5, the number variable remains
at 1, causing an infinite loop.

#include <iostream>
using namespace std;
int main(){

int counter = 1;

while (counter <= 5){
cout << "Hello" << endl;

cout << "That's all!":

return 0;

Using the while Loop for Input Validation - Example #1

#include <iostream>
using namespace std;

int main() {
int num;

cout << "Enter a positive number: ";
cin >> num;

while (num <= 0) {
cout << "Invalid input. Please enter a positive number: ",
cin >> num;

}
Output
cout << "You entered a positive number: " << num << endl; -
Enter a positive number: O
Invalid input. Please enter a positive number: -2
return O; Invalid input. Please enter a positive number: -19
} Invalid input. Please enter a positive number: 5

You entered a positive number: 5

Using the while Loop for Input Validation - Example #2

#include <iostream>
using namespace std;

~1int main() {
int num;

while (true) {
cout << "Enter a positive number: ";

cin >> num;
if (num > 0) {

break; // Exit the loop if the user enters a positive number

cout << "Invalid input. ";

}
cout << "You entered a positive number: " << num << endl; OUtpUt
Enter a positive number: O
return 0; Invalid input. Enter a positive number: -6
} Invalid input. Enter a positive number: 8

You entered a positive number: 8

Using the while Loop for Input Validation

#include <iostream>
using namespace std;

~int main() {
int num;

while (true) {
cout << "Enter a positive number: ";
cin >> num;
if (num > 0) {
break; // Exit the loop if the user enters a positive number

cout << "Invalid input. ";

cout << "You entered a positive number: " << num << endl;

return 0;

#include <iostream>
using namespace std;

int main() {
int num;

cout << "Enter a positive number: ";
cin >> num;

while (num <= 0) {
cout << "Invalid input. Please enter a positive number: ";
cin >> num;

cout << "You entered a positive number: " << num << endl;

return 0;

Using the while Loop for Input Validation - Example #2

#include <iostream>
using namespace std;
int main(){
int grade;
cout << "Enter a grade: ",
cin >> grade;
while (grade < 0 || grade > 100){
cout << "Invalid grade\nEnter valid grade: ";
cin >> grade;

if (grade >= 50){

cout << "Passed" << endl;
} else {

cout << "Failed" << endl;

}

return 0;

Output

Enter a grade: -5
Invalid grade

Enter valid grade: 101
Invalid grade

Enter valid grade: 78
Passed

e Count-controlled loops are so common that C++ provides a type of loop specifically

for them. It is known as the for loop.

e The for loop is suitable when a known number of iterations is required.
e Three essential elements define a count-controlled loop:
e |nitialization: It starts with setting a counter variable to an initial value.
e Termination condition: The loop runs while the counter variable is less than or
equal to a maximum value; when false, the loop ends.
e Update: The counter variable is modified during each iteration, typically through
Incrementing. for (initialization; test; update)

{

statement;

statement;

// Place as many statements here
// as necessary.

}

Required semicolon separator

for keyword

Control variable name

I

for (int counter =1; counter <= 10 ;counter++)

"

Initial value

semicolon
separator

Control variable
increment

Loop continuation condition

The for Loop).

For Loop

3.b) If false
3.a) If true
1. 2. 6.

for (initialization ; condition ; Up
{

// body of the loop
/| statements to be executed

}
/| statements outside the loop)G

] -\. ({“‘])
4.

The for Loop - Example #1

#include <iostream>
using namespace std,;
int main() {

for(int 1=0;1<5;1++){
cout<<"Hello"<<endl:

; Output
cout<<"That's All"; B MicrosoftV

Hello
Hello
return O; Hello
Hello
} Hello
That's all!

The for Loop - Example #2

#include <iostream>
using namespace std;
int main() {

cout<<"Number\t\tSquare"<<endl;

for(int 1=1;1<=10;1++){
cout<<i<<"\t\t\t\t"<<i*i<<endl:

return 0;

Output

Number Square
1 1
2 4
3 9
4 16
5 25
6 36
7 49
8 64
9 81
10 100

Other Forms of the Update Expression

e Vary the control variable from 1 to 100 in increments of 1.

for(inti=1;i<=100; i++) l

e Vary the control variable from 100 down to 1 in increments of -1 (decrements of 1).
for(inti=100;i>=1;i-)

e Vary the control variable from 7 to 77 in steps of 7.
for(inti=7;i<=77;i+=7)

e Vary the control variable from 20 down to 2 in steps of -2.

for(inti=20;i>=2;i-=2)

e Vary the control variable over the following sequence of values: 2, 5, 8, 11, 14, 17, 20.

for(inti=2;i<=20;i+=3)

using namespace std;
- 1nt main() {

// 1. Increasing increments
for (int 1 = 1; 1 <= 10; 1+=2) {
cout << i << " ",

}

cout << "\n";

// 2. Decreasing increments
for (int 1 = 10; 1 >=1; 1-=2) {
cout << 1 << " ",

}

cout << "\n";

// 3. Increments of other amounts
for (int 1 = 5; 1 <= 20; 1+=5) {
cout << 1 << " "

}

cout << "\n";

return O;

Other Forms of the Update Expression

== #include <iostream>

#include <iostream>

using namespace std;
- 1int main() {
cout << "Generating the sequence: 1, 4, 9, 16, 25\n";

v for (int 1 = 1; 1 <= 5; i++) {
int squared = 1 * 1i;
cout << squared << " ",

}

cout << "\n";

cout << "Generating the sequence: 10, 8, 6, 4, 2\n";

v for (int 1 = 10; 1 >= 2; 1-=2){

cout << 1 << " "

}

cout << "\n";

cout << "Generating the sequence: 3, 6, 9, 12, 15\n";

v for (int 1 = 3; 1 <= 15; 1+=3){

cout << 1 << " "

cout << "\n";

return 0;

Creating a User Controlled for Loop

H e
< -
= <

2008

Write a C++ program that asks the user to input two numbers and print the numbers between

them.

#include <iostream>
using namespace std;
int main() {

int firstNumber, secondNumber;

cout << "Enter the first number: ":
cin >> firstNumber;

cout << "Enter the second number: ":
cin >> secondNumber;

for (int 1 = firstNumber+1; 1 < secondNumber;
cout << 1 << " ",

return 0;

i++) {

Output

Enter the first number:
Enter the second number:
6 7 8

5

9

“break” Statement

H »
4 -
= <
2008

\I/

e The break statement is used to prematurely exit a loop (such as a
for loop and while loop) when a certain condition is met.

e When encountered, the break statement terminates the nearest
enclosing loop.

e [t's useful for avoiding unnecessary iterations and improving code
efficiency.

“break” Statement

#include <iostream>

using namespace std;
int main() {

for (int 1 = 0; 1 < 10; 1++) {

if (1 == 5) {
cout << "Breaking the loop at 1 = " << 1 << endl;
break;
}
cout << "Currently at 1 = " << 1 << endl;
}
return O;

