Tishk International University

Cybersecurity Department
Course Code: CBS 113

'5/1 “;‘.’, >

Lecture 6

Do-While & Nested Loops

all 2024

Hemin lbrahim, PhD
emin.ibrahim@tiu.edu.iq

 The do-while loop
 While vs do-while

e Sentinels

 Nested Loops

Objectives

By the end of this lesson, you will be able to

Understand and utilize the do-while loop for executing code repeatedly, ensuring at
least one execution.

Differentiate between while and do-while loops, understanding their distinct execution
methods and choosing the appropriate loop based on program needs.

Learn about sentinels, special values marking the end of input or signaling conditions
within loops, ensuring proper loop termination and effective data handling.

Grasp nested loops' concept for creating intricate patterns, traversing multi-dimensional

structures, and solving problems requiring repetitive operation.

e The do-while loop is a posttest loop.

e |t tests its expression after each iteration.
e |t always executes at least one iteration, even if the expression is initially false.

e While loops test their expression before the first iteration, whereas do-while loops
test their expression after the first iteration.

e Format of a do-while loop with a single statement in its body: l‘
do Statement(s)
‘ |
statement;

statement;
// Place as many statements here

True

Expression
// as necessary.

} while (expression);

2.

5.b) If false

Do - While Loop

1.
—>do
6.
-
>
// body of the loop
/| statements to be executed
»Updation
—while (condition);
4. A l

> /| statements outside the loop

5.a) If true

Example #1-1

#include <iostream>
using namespace std;

int main() {
int number;

do {
cout << "Enter a positive number: ";
cin >> number;

} while (number <= 0);

cout << "Thank you for entering a positive number!\n";

Output

return 0;

Enter a positive number: -4
Enter a positive number: 4
Thank you for entering a positive number!

Example #1-2

#include <iostream>
using namespace std;
int main() {

int number:

do {
cout << "Enter a positive number: ";
cin >> number;

i1f(number <= 0) {
cout << "Please enter a number greater than 0!\n";

i Output

} while(number <= 0);
Enter a positive number: -3

cout << "Thank you! You entered: " << number << endl; Please enter a number greater than 0!
Enter a positive number: -5

return O: Please enter a number greater than 0!
} Enter a positive number: 6

Thank you! You entered: 6

#include <iostream>
using namespace std;

int main() {
int number;

do {
cout << "Enter a positive number: ";
cin >> number;

} while (number <= 0);

cout << "Thank you for entering a positive number!\n";

return 0;

Enter a positive number: -4
Enter a positive number: 4
Thank you for entering a positive number!

#include <iostream>
using namespace std;
int main() {

int number;

do {
cout << "Enter a positive number: ";
cin >> number;

if(number <= 0) {
cout << "Please enter a number greater than 0!\n";

}

} while(number <= 0);
cout << "Thank you! You entered: " << number << endl;

return O;

Enter a positive number: -3

Please enter a number greater than 0!
Enter a positive number: -5

Please enter a number greater than 0!
Enter a positive number: 6

Thank you! You entered: 6

Example #2

"#include <iostream>
using namespace std;
int main(){

string name;

int quiz1, quiz2, quiz3;
double average;

char again; // To hold Y/N

do{
cout<<"Input student name: ";
cin>>name;
cout << "Enter the mark of 3 quizzes: ",
cin >> quizl1 >> quiz2 >> quiz3;
// Calculate and display the average. OUtpUt
average = (quizl1 + quiz2 + quiz3) / 3.0;
cout << "Name: "<<name<<".\t The average: " << average << ".\n"; Input student name: Alan
Enter the mark of 3 quizzes: 3 4 2
// Does the user want to average another set? Name: Alan. The average: 3.
c?ut << "D? you want to average another set? (Y/N) "; Do you want to average another set? (Y/N) y
cin >> again;
} while (again == 'Y' || again == 'y'): Input student name: Kamal

Enter the mark of 3 quizzes: 3 4 3
return 0 Name: Kamal. The average: 3.33333.
} Do you want to average another set? (Y/N) n

Do Whlie vs While loop

While versus Do-While Loops

while(condition) do {
body; body;
} while(condition);

Condition ?

Condition ?

While Loop

3.b) If false

3.a) If true

// body of the loop
/| statements to be executed

5 L pdation

}

— /| statements outside the loop

5.b) If false

Do - While Loop

1.

—> do

I
T <

L Nﬁ

// body of the loop
/| statements to be executed

— // statements outside the loop

5.a) If true

int a
while (a <= 3)

cout << "Hello, world" << endl:

a++:

0 loop

d,

int a
do

cout << "Hello, world" << endl:

a++:

r

} while (a <= 3);

1 loop

B " D:\VS Projects\SimpleApp\Debug\SimpleApp.exe

ress any key to continue

8" D:AVS Projects\SimpleApp\Debug\SimpleApp.exe = —
O,

Press any key to continue

e A sentinel is a special value denoting the end of a list of values.

e |t is distinct from other values in the list, serving as a signal that no more values need

to be entered.

e When the user inputs the sentinel value, the loop terminates.

#include <iostream>
using namespace std;
int main(){

int grade,counter=0,total=0;

cout << "Enter a grade (-1 to exit): ";

cin >> grade;

while (grade != -1){
total = total + grade;
counter++;

cout << "Enter a grade (-1 to exit): ";

cin >> grade;

}

cout << "Average of grades are: "

return 0;

<< total / float(counter);

Output
Enter a grade
Enter a grade
Enter a grade
Enter a grade
Enter a grade
Enter a grade
Enter a grade
Average

of grades

NN N N N NN

— e e e e D

to
to
to
to
to
to
to

exit):
exit):
exit):
exit):
exit):
exit):
exit):

78
57
98
65
77
83
-1

are: 76.3333

#include <iostream>
using namespace std;
- 1nt main() {

int number:
int count = 0;

cout << "Enter numbers (-1 to stop):\n";

do {
cin >> number:

if(number != -1) {
count = count + 1;
}
} while(number != -1);

cout << "You entered " << count << " numbers.\n":

return O;

Output

Enter numbers (-1 to stop):
3

4

6

-1

You entered 3 numbers.

Write a C++ program that calculates the average of a set of grades entered by the

user. The user should be able to enter multiple grades, and the input should
terminate when the user enters -1. The program should then output the average
grade. If no grades (other than -1) are entered, it does not need to display anything.

using namespace std;

int main() {

int grade, count=0;
int total=0;
double avg;
do {
cout<<"Input the grade (-1 to stop): ",
cin>>grade;
if(grade!=-1){
total=total+grade;
count++;
}
} while(grade!=-1);
1f(count>0){
avg=double(total)/count;
cout<<"You 1input "<<count<<" numbers and the AVG= "<<avg,

}

return 0;

Deciding Which Loop to Use?

e While Loop:
e Conditional loop repeating as long as a condition exists.
e Pretest loop: It checks the condition before the iteration.
e Suitable when the loop shouldn't iterate if the condition is false initially.
e Do-While Loop:
e Conditional loop that iterates at least once.
e Posttest loop: It checks the condition after the first iteration.
e |deal for scenarios where you always want the loop to run at least once, like
repeating a menu.
* For Loop:
e Pretest loop with built-in expressions for initialization, testing, and updating.
e Convenient for controlling iterations using a counter variable.

e Set Clear Objectives: Before using a loop, define the purpose and goals of the loop.

e Choose the Right Loop Type: Understand the different types of loops available and
choose the one that best fits your task.
e Use a for loop for a known number of iterations,
e 3 while loop for indefinite iterations with a condition, and
e 3 do-while loop when you want to ensure the loop body executes at least once.

e Initialize and Update Variables Carefully: Initialize and update loop variables
meticulously for accuracy.

e Use Break wisely: Utilize the break statement to exit a loop prematurely when a
specific condition is met.

e Definition:

e Nested loops are loops within loops.
e Structure:
e Outer loop controls the iteration over rows.
e Inner loop manages the iteration over columns.
e Usage:
e Create complex patterns and structures.
e Traverse multi-dimensional arrays.
e Solve problems requiring repetitive operations.
e Example:
e Printing patterns, such as squares, triangles, or rectangles.
e Accessing elements in matrices or multi-dimensional arrays.

Nested Loops - Example #1

#1include <iostream>
using namespace std;

int main() {
for (int 1 = 0; 1 < 3; 1++) {
for (int j = 0; j < 3; j++) {

cout << "* "
}
cout << endl;
} Output
return 0;
} * % *
* % %

* * %

Nested Loops - Example #2

#include <iostream> o

using namespace std;

~1int main(){ //"“““°//

>

for (int r = 1; r <= 4; r++){
for (int ¢ = 1; ¢ <= r; c++){
cout << "F "]

False

}
cout << endl;
} c=1to4
True
Output /
False
\ 4
return 0 ; *) v / output "* " /
} * % / output newline /
* % %
*

Nested Loops - Example #3

#1nc Llude <iostream>|
LNng namespace std;
int main(){
for (int 13 1 <= 10; i++) {
|] =1;] <= 10; j++
cout << i *x j << "\t";

cout << endl;

Output

1
P
3
4
5
6
7/
8
9
1

#include <iostream>
using namespace std;

int main()

{

for (int i=1:i<=10:i++){
for (int j=1i;j<=1%10;j=j+1)1
cout<<j<<"\t";

cout<<endl:

+

return 0;

R OoO~JOULLE WNPR

— e e e e

2 3
2 3 4
2 345

2 2
333

4 4 4 4
5 5555

