

ENDOCRINE & PHARMACOLOGY OF DIABETES

Khder Hussein Rasul Pharmacology, MA 411 Spring Semester 7th week 22/04/2025

Outline

- Endocrine system
- Pharmacology of diabetes

Objectives

By the end of this lecture, students should be able to:

- 1. Understand endocrine system.
- 2. Being familiar more with hormone
- 3. Describe the action of drugs used in diabetes management.

Endocrine system, hormones and target tissues

- Endocrine system consists of endocrine glands that secrete chemicals called hormones and produces longterm responses.
- Endocrine glands: are ductless. This means that they do not have ducts to take their secretions to specific sites. Instead, hormones are secreted directly into capillaries and circulate in the blood throughout

- > Hormones are chemical messengers that stimulate specific cells or tissues into action.
- **Receptor** is a molecule inside or on the surface of a cell (target cell) that binds to hormone

Components of the endocrine system

Key Components of the endocrine system

- 1. Hypothalamus: controls the pituitary gland.
- 2. Pituitary gland: secretes hormones influencing other endocrine glands.
- 3. Thyroid gland: Regulates metabolism, energy production, and growth.
- 4. Parathyroid glands: Maintain calcium balance in the blood.
- 5. Adrenal glands: Produce stress hormones (cortisol, adrenaline) and regulate metabolism.
- 6. Pancreas: Controls blood sugar levels
- 7. Gonads (Ovaries & Testes): Responsible for reproductive hormones

Endocrine System

Endocrine glands

Location of endocrine glands

21/04/2025

Khder Hussein Rasul

7

Testosterone

HaC

Chemistry of the hormones

Hormones are organized into three main classes based on their chemical structure:

1. Steroid hormones are synthesized from cholesterol

- Steroid hormones are lipid-soluble, so they can pass through cell membranes to reach receptor molecules located inside their target cells.
- Example of steroid hormones: aldosterone, estrogen, and testosterone.

Chemistry of the hormones

2. Peptide and protein hormones are structured from chains of amino acids

These hormones are chains of amino acids

- Short chains of amino acids called peptides
- > Oxytocin is peptide hormone
- ➢ Long chains of amino acids called proteins.
- > Insulin is protein hormone.

Chemistry of the hormones

3. Amine hormones are modified amino acids (Amino acid derivatives)

- > These simple hormones are structural variations of the amino acids.
- The derivatives of tyrosine, such as the thyroid hormones released by the thyroid gland.
- > Melatonin, secreted by the pineal gland, is derived from tryptophan.

Pharmacology of Diabetes Mellitus

Diabetes is a chronic metabolic disorder characterized by high blood sugar levels (hyperglycemia) due to defects in insulin production, insulin action, or both.

Types of Diabetes Mellitus

- 1. Type 1 Diabetes Mellitus (T1DM) Insulin-dependent diabetes
- 2. Type 2 Diabetes Mellitus (T2DM) Insulin resistance diabetes

Type 1 Diabetes Mellitus (T1DM) – Insulin-Dependent Diabetes

Type 1 Diabetes Mellitus (T1DM) – Insulin-Dependent Diabetes

An autoimmune disorder where the body's immune system attacks pancreatic β -cells, leading to little or no insulin production.

Causes: Autoimmune destruction of insulin-producing β -cells in the pancreas.

Onset: Usually in childhood or adolescence but can occur at any age.

Treatment: Requires lifelong insulin therapy.

Symptoms: Rapid weight loss, excessive thirst (polydipsia), frequent urination (polyuria), and fatigue.

Type 2 Diabetes Mellitus (T2DM) – Insulin Resistance Diabetes

- ➤ A metabolic disorder where cells become resistant to insulin.
- > **Causes:** Obesity, sedentary lifestyle and genetics.
- > **Onset:** More common in adults over 40.
- > **Treatment:** Lifestyle changes and oral medications (Metformin).
- Symptoms: Often mild at first—fatigue, slow wound healing, frequent infections.

Insulin

- > Insulin is a hormone secreted by the β -cells of the islets of Langerhans in the pancreas.
- Blood glucose stimulates insulin release.
- Insulin binds to specific receptors in the cell membranes, initiating a number of actions, including an increase in glucose uptake by the muscle, liver and adipose tissue.
- In diabetes mellitus, there is a relative or total absence of insulin, which causes reduced glucose uptake by insulin-sensitive tissues and has serious consequences.
- ▶ Lipolysis and muscle proteolysis result in weight loss and weakness.

Khder Hussein Rasul

Pharmacology of Diabetes Mellitus

Short-acting insulins

For example Insulin lispro

- Rapid-acting insulin analog 1.
- 2. Onset of action 10-15 minutes
- 3. Peak action 30-90 minutes
- Duration of action 3-5 hours 4.
- 5. Route of administration Subcutaneous (SC) injection, IV (in hospital settings)
- Half-Life ~1 hour 6.
- 7. Time to administer 5-15 minutes before meals

NIIUEI HUSSEIII KASUI

Mechanism of action Insulin lispro

1. Binds to insulin receptors on target cells (liver, muscle, adipose tissue) \rightarrow stimulates glucose uptake and inhibits glucose production.

Khder Hus

- 2. Promotes glycogenesis
- 3. Inhibits lipolysis
- 4. Enhances protein synthesis

Intermediate and long acting

21/04/2025

Khder Hussein Rasul

Oral antidiabetic drugs

Sulphonylureas and rapaglinide stimulate insulin release from the pancreatic islets and so the patient must have partially functional β -cells for these drugs to be of use.

Hypoglycaemia and hypoglycaemic coma may be induced by longer-acting drugs, especially in elderly patients.

21/04/2025

Oral antidiabetic drugs

Metformin

- Metformin is the first-line drug for patients with type 2 diabetes
- 2. Metformin reduces hepatic glucose production and acts peripherally to increase glucose uptake.
- it does not increase insulin release, it rarely causes hypoglycaemia.
- Adverse effects include nausea, vomiting, diarrhoea and, very occasionally, potentially fatal lactic acidosis.

